摘要:
LDPC (Low Density Parity Check) code size adjustment by shortening and puncturing. A variety of LDPC coded signals may be generated from an initial LDPC code using selected shortening and puncturing. Using LDPC code size adjustment approach, a single communication device whose hardware design is capable of processing the original LDPC code is also capable to process the various other LDPC codes constructed from the original LDPC code after undergoing appropriate shortening and puncturing. This provides significant design simplification and reduction in complexity because the same hardware can be implemented to accommodate the various LDPC codes generated from the original LDPC code. Therefore, a multi-LDPC code capable communication device can be implemented that is capable to process several of the generated LDPC codes. This approach allows for great flexibility in the LDPC code design, in that, the original code rate can be maintained after performing the shortening and puncturing.
摘要:
System correcting random and/or burst errors using RS (Reed-Solomon) code, turbo/LDPC (Low Density Parity Check) code and convolutional interleave. A novel approach is presented that combines different coding types within a communication system to perform various types of error correction. This combination of accommodating different coding types may be employed at either end of a communication channel (e.g., at a transmitter end when performing encoding and/or at a receiver end when performing decoding). By combining different coding types within a communication system, the error correcting capabilities of the overall system is significantly improved. The appropriate combination of turbo code and/or LDPC code along with RS code allows for error correction or various error types including random error and burst error (or impulse noise).
摘要:
Amplifying magnitude metric of received signals during iterative decoding of LDPC code and LDPC coded modulation. By appropriately selecting a metric coefficient value that is used to calculate the initial conditions when decoding LDPC coded signals, a significant reduction in BER may be achieved at certain SNRs. The appropriate selection of the metric coefficient value may be performed depending on the particular SNR at which a communication system is operating. By adjusting this metric coefficient value according to the given LDPC code, modulation, and noise variance, the overall performance of the decoding may be significantly improved. The convergence speed is slowed down so that the decoder will not go to the wrong codeword, and the moving range of the outputs of the decoder is restricted so that the output will not oscillate too much and will eventually move to the correct codeword.
摘要:
A method for asymmetrical MIMO wireless communication begins by determining a number of transmission antennas for the asymmetrical MIMO wireless communication. The method continues by determining a number of reception antennas for the asymmetrical MIMO wireless communication. The method continues by, when the number of transmission antennas exceeds the number of reception antennas, using spatial time block coding for the asymmetrical MIMO wireless communication. The method continues by, when the number of transmission antennas does not exceed the number of reception antennas, using spatial multiplexing for the asymmetrical MIMO wireless communication.
摘要:
IPHD (Iterative Parallel Hybrid Decoding) of various MLC (Multi-Level Code) signals. Various embodiments are provided by which IPHD may be performed on MLC LDPC (Multi-Level Code Low Density Parity Check) coded modulation signals mapped using a plurality of mappings. This IPHD may also be performed on MLC LDPC coded modulation signals mapped using only a singe mapping as well. In addition, various embodiments are provided by which IPHD may be performed on ML TC (Multi-Level Turbo Code) signals. These principles of IPHD, shown with respect to various embodiments IPHD of MLC LDPC coded modulation signals as well as the IPHD of ML TC signals, may be extended to performing IPHD of other signal types as well. Generally speaking, based on the degree of the MLC signal, a corresponding number of parallel paths operate in cooperation to decode the various levels of the MLC signal.
摘要:
A parity check matrix is generated for detecting predefined errors in a coded string of bits. A column of the matrix is generated by selecting values for elements in the column and processing a predefined error with the selected values in order to produce a syndrome. The selected values are assigned to the column of the parity check matrix if an element of the syndrome has a value indicative of the predefined error.
摘要:
A method of transmitting data in a cable modem system includes the steps of encoding the data using forward error correction. The data is then encoded with Turbo encoding. The data is then sent to a modulation scheme. The data is then transmitted over a cable channel. The data is then demodulated. The data is then decoded using a Turbo decoder. An inverse of the forward error correction is then applied to the data.
摘要:
In a communication device that is operative to perform decoding, a log-likelihood ratio (LLR) circuitry operates to calculate LLRs corresponding to every bit location within a received bit sequence. This received bit sequence may include a header and a data portion (both of which may be included within a frame that also includes a preamble). The header is composed of information bits, a duplicate of those information bits (such as may be generated in accordance with repetition encoding), and redundancy bits. The header includes information corresponding to frame or data including frame length, a code type by which the data are encoded, a code rate by which the data are encoded, and a modulation by which symbols of the data are modulated. Once the header has been decoded, then the data corresponding thereto is decoded by a block decoder circuitry to make estimates of that data.
摘要:
Header encoding for SC and/or OFDM signaling using shortening, puncturing, and/or repetition in accordance with encoding header information within a frame to be transmitted via a communication channel employs different respective puncturing patterns as applied to different portions thereof. For example, a first puncturing pattern is applied to a first portion of the frame, and a second puncturing pattern is applied to a second portion of the frame (the second portion may be a repeated version of the first portion). Shortening (e.g., by padding 0-valued bits thereto) may be made to header information bits before they undergo encoding (e.g., in an LDPC encoder). One or both of the information bits and parity/redundancy bits output from the encoder undergo selective puncturing. Moreover, one or both of the information bits and parity/redundancy bits output from the encoder may be repeated/spread before undergoing selective puncturing to generate a header.
摘要:
In a communication device that is operative to perform decoding, a log-likelihood ratio (LLR) circuitry operates to calculate LLRs corresponding to every bit location within a received bit sequence. This received bit sequence may include a header and a data portion (both of which may be included within a frame that also includes a preamble). The header is composed of information bits, a duplicate of those information bits (such as may be generated in accordance with repetition encoding), and redundancy bits. The header includes information corresponding to frame or data including frame length, a code type by which the data are encoded, a code rate by which the data are encoded, and a modulation by which symbols of the data are modulated. Once the header has been decoded, then the data corresponding thereto is decoded by a block decoder circuitry to make estimates of that data.