Abstract:
A communications system comprising a plurality of a communications devices and an infrastructure equipment. The infrastructure equipment is configured to communicate with one or more of the plurality of communication devices via a wireless access interface and the plurality of communications devices are configured to perform device-to-device communication with one or more others of the plurality of communications devices via the wireless access interface and to communicate with the infrastructure equipment via the wireless access interface. One of the plurality of communications devices is configured to transmit data in resources of the wireless access interface to one or more of the communications devices and one or more of the communications devices are configured to detect signals in the wireless access interface from the infrastructure equipment, the signals indicating potential interference in the wireless access interface, and to provide, in response to detecting the signals, an indication of the resources of the wireless access interface to the infrastructure equipment.
Abstract:
An infrastructure equipment forming part of a mobile communications network receives data packets from a communications terminal, and including a scheduler configured to control a transmitter and a receiver to transmit and receive signals according to the wireless access interface. The scheduler is configured to receive from the receiver an indication of a number of delay tolerant data packets and non-delay tolerant data packets in an input buffer of the communications terminal, and an indication of a current state for radio communications for transmitting the data packets from the communications terminal to the infrastructure equipment via the wireless access interface. Data packets which can be classified into at least delay tolerant and non-delay tolerant data packets are transmitted by a communications terminal to conserve the power of the communications terminal and more efficiently utilize the communications resources of a wireless access interface provided by a mobile communications network.
Abstract:
A wireless telecommunication system includes base stations for communicating with terminal devices. One or more base stations support a power boost operating mode in which a base station's available transmission power is concentrated in a subset of its available transmission resources to provide enhanced transmission powers as compared to transmission powers on these transmission resources when the base station is not operating in the power boost mode. A base station establishes an extent to which one or more base stations in the wireless telecommunications system supporting the power boost operating mode conveys an indication of this to a terminal device. The terminal device receives the indication and uses the corresponding information to control its acquisition of a base station of the wireless telecommunication system, for example by taking account of which base stations support power boosting and/or when power boosting is supported during a cell attach procedure.
Abstract:
A wireless telecommunication system includes base stations for communicating with terminal devices. One or more base stations support a power boost operating mode in which a base station's available transmission power is concentrated in a subset of its available transmission resources to provide enhanced transmission powers as compared to transmission powers on these transmission resources when the base station is not operating in the power boost mode. A base station establishes an extent to which one or more base stations in the wireless telecommunications system support the power boost operating mode conveys an indication of this to a terminal device. The terminal device receives the indication and uses the corresponding information to control its acquisition of a base station of the wireless telecommunication system, for example by taking account of which base stations support power boosting and/or when power boosting is supported during a cell attach procedure.
Abstract:
Sub-band CQI reports are introduced for LTE systems having system bandwidth of narrow band, e.g. less than or equal to 6 resource blocks, which address issues pertinent to such narrowband systems. Three related methods are described: fixed, semi-static and adaptive sub-band size. To varying degrees they are each specified in accordance with the channel condition.
Abstract:
A perturbation is made to contents and/or locations in time and frequency of Reference Signals transmitted by a cell, such that the perturbation implies information regarding a capability or configuration of the cell as regards availability or configuration of a network functionality, in particular a facility to offer a narrowband virtual carrier operation. The contents and/or locations in time and frequency of the reference signals used are typically based on physical cell identity. In certain embodiments the PCI carried by some identifiable RS resources is changed, in others, the RS is transmitted in unexpected resources. The network functionality configuration information is inferred from various relationships between these transmissions and the cell's actual PCI and/or expected RS transmission resources.