Abstract:
An airfoil of a gas turbine engine having a hollow body defining at least one airfoil cavity therein, the hollow body defining an inner diameter and an outer diameter and a baffle positioned within the at least one airfoil cavity and extending over less than an entire length between the inner diameter and the outer diameter, the baffle configured to reduce the cross-sectional area within the at least one airfoil cavity. The at least one airfoil cavity includes a first portion having a length that is defined by an open cavity having a full cross-sectional area and a second portion having a length that is defined by a reduced cross-sectional area, the second portion being the length of the baffle within the at least one airfoil cavity.
Abstract:
A metal single crystal turbine component with internal passageways includes a polycrystalline turbine blade formed by additive manufacturing. The turbine component is remelted and directionally solidified to form the single crystal turbine component with internal passageways.
Abstract:
An intermediate component with an internal passageway includes a solid metallic additively manufactured component with an internal passageway in a near finished shape. The component has voids greater than 0 percent but less than approximately 15 percent by volume and up to 15 percent additional material by volume in the near finished shape compared to a desired finished configuration. Also included are a ceramic core disposed within the internal passageway of the component and an outer ceramic shell mold encasing an entirety of the component, such that an entire external surface of the component is covered by the outer ceramic shell mold.
Abstract:
An airfoil assembly has at least one cooling hole in an aft edge of at least one platform for cooling at least one of an axially downstream airfoil root and/or tip region. The airfoil assembly may be a high pressure turbine first stage vane coupled with a combustor operating at a low Pattern Factor.
Abstract:
An airfoil having a cooling hole pattern is disclosed. The cooling hole pattern may be an offset herringbone pattern. For instance, the airfoil may have rows of cooling holes arranged in filmrows, each filmrow divided into groups of cooling holes. A first group may be oriented to direct cooling air generally radially outward over a surface of the airfoil and a second group may be oriented to direct cooling air generally radially inward over a surface of the airfoil. Between the first group and the second group of cooling holes in each filmrow, a transition region exists. The adjacent filmrows are staggered to enhance the effectiveness of the convective cooling proximate to the transition regions by causing each filmrow to direct cooling air over the transition region of an adjacent filmrow.
Abstract:
A gas turbine engine airfoil includes a platform, and spaced apart walls that provide an exterior airfoil surface that extends radially from the platform to an end opposite the platform. A serpentine cooling passage is arranged between the walls and has a first passageway that extends from the platform toward the end and a second passageway fluidly connecting to the first passageway and extending from the end toward the platform to an end. A platform cooling passageway is fluidly connected to the end and extends transversely into the platform. A cooling hole fluidly connects the platform cooling passageway to an exterior surface.
Abstract:
A rotor blade of a turbine engine may have internal passages to permit the travel of cooling air through the blade. These passages may include a tip flag, a serpentine channel, and a trailing edge channel. The tip flag may extend radially outward along the leading edge of the rotor blade and may turn axially aftward along the tip of the rotor blade. The tip flag may terminate forward of a portion of the serpentine channel and the trailing edge channel. Thus the tip flag may be a “partial tip flag.” The internal passages may be arranged to ameliorate the effect of ambient pressure variations, such as between the leading edge and the trailing edge of the rotor blade, on the flow travel of cooling air through the rotor blade.
Abstract:
One embodiment includes a method to regenerate a component. The method includes additively manufacturing the component with at least a portion of the component in a near finished shape. The component is encased in a shell mold, the shell mold is cured, the encased component is placed in a furnace and the component is melted, the component is solidified in the shell mold, and the shell mold is removed from the solidified component.
Abstract:
An airfoil for a gas turbine engine includes pressure and suction walls that are spaced apart from one another and joined at leading and trailing edges to provide an airfoil that has an exterior surface that extends in a radial direction to a tip. A film cooling hole is provided in the tip and extends at an angle relative to the radial direction. The film cooling hole includes a diffuser.
Abstract:
A gas turbine engine blade includes a platform arranged between a root and an airfoil. A cooling passage extends from the root through the platform to the airfoil. The cooling passage includes an inlet that splits into first and second branches that rejoin one another in a platform passage arranged in the platform. An airfoil passage extends from the platform passage and is arranged in the platform.