Abstract:
A driving module, for a display device, includes a first transistor comprising a gate coupled to a first node, a drain coupled to an output end, and a source coupled to a first positive voltage source; a second transistor comprising a gate coupled to a second node, a drain coupled to the output end, and a source coupled to a first negative voltage source; and a voltage generating unit, coupled to an input end, a second positive voltage source and a second negative voltage source for generating a first voltage at the first node and a second voltage at the second node; wherein a difference between a first positive voltage of the first positive voltage source and the first voltage is smaller than a first threshold and a difference between a first negative voltage of the first negative voltage source and the second voltage is smaller than a second threshold.
Abstract:
The present relates to a display panel and the driving circuit thereof. A scan driving circuit of the driving circuit of the display panel according to the present invention produces a plurality of scan signal for scanning a plurality of pixel structures of the display panel. In addition, a data driving circuit produces a plurality of data signals corresponding to the plurality of scan signals and transmits the plurality of data signals to the plurality of pixel structures, where a common electrode of the plurality of pixel structures is coupled to a ground. Moreover, the data driving circuit according to the present invention adjusts the signal levels of a plurality of gamma voltages according to a compensation signal of a compensation circuit, and thus further adjusting the levels of the data signals.
Abstract:
An analog-to-digital converting device includes a converting module for sampling an input voltage according to a plurality of sampling signals, to generate a comparing signal; a control module, for adjusting the plurality of sampling signal according to the comparing signal, to generate a first digital signal corresponding to the input voltage and a plurality of weights; and a calibration module, for adjusting the plurality of sampling signal according to the first digital signal to make the control module generate a second digital signal and for adjusting the plurality of weights according to the first digital signal and the second digital signal; wherein the second digital signal is different from the first digital signal and is corresponding to the plurality of weights.
Abstract:
A power conversion system in an electronic device is utilized for converting an input voltage of a power source terminal to a required voltage of a load circuit to provide power to the load circuit. The power conversion system includes a first voltage conversion circuit for converting the input voltage to the required voltage of the load circuit according to a first control signal; and a power control module for generating the first control signal according to a starting signal or a load voltage of the load circuit; wherein the load circuit receives the voltage outputted from the first voltage conversion circuit to perform operations.
Abstract:
The present invention relates to a driving circuit, the touch device thereof the touch module thereof, and the method for manufacturing the same. The present invention comprises a control circuit, a scan circuit, a touch panel, and a detection circuit. The control circuit generates an input signal. The scan circuit comprises a plurality of signal generating circuits, which receive the input signal, generate a plurality of scan signals according to the input signal, and output the plurality of scan signals to the plurality of scan electrodes of the touch panel. The detection circuit detects the touch panel according to the plurality of scan signals and outputs a detection signal to the control circuit to let the control circuit know at least a touch point of the touch panel being touched.
Abstract:
A driver circuit for dot inversion of liquid crystals includes a positive source supplying a first positive signal and a second positive signal; a negative source supplying a first negative signal and a second negative signal; a first selector unit connected with the sources to receive the first positive signal and the first negative signal; a second selector unit connected with the sources to receive the second positive signal and the second negative signal; a first source connected with the selection unit to alternatively output a first positive voltage and a first negative voltage; a second source connected with the selection unit to alternatively output a second positive voltage and a second negative voltage. When the first source outputs the first positive voltage, the second source outputs the second negative voltage. When the first source outputs the first negative voltage, the second source outputs the second positive voltage.
Abstract:
The present invention relates to a driving circuit for a display panel and the driving module thereof and a display device and the method for manufacturing the same. The present invention comprises a power generating module, a plurality of signal generating units, a power generating circuit, and a scan control circuit. The power generating module generates a supply power source according to an input power source. The plurality of signal generating units are coupled to the power generating module and generate a plurality of control signals according to the supply power source and a plurality of input signals. The power generating circuit generates a driving power source. The scan control circuit is coupled to the power generating circuit and the plurality of signal generating unit, and generates a plurality of scan signals according to the driving power source and at least one of the plurality of control signals.
Abstract:
The present invention relates to a sensing structure of touch panel, which comprises a plurality of first electrode groups are located on a first side of a substrate. The bottom of each first electrode is located on the first side and extends towards a second side. A plurality of extended electrode groups are connected to the plurality of first electrode groups, respectively. The bottom of each extended electrode is located on the second side and extends towards the first side. The plurality of second electrode groups are located on the substrate. A first sub-electrode of each second electrode is interleaved with and insulated electrically from each extended electrode. The plurality of third electrode groups are located on the substrate and have a plurality of third electrodes. A first sub-electrode of the third electrode is interleaved with and insulated electrically from the second sub-electrode of the second electrode.
Abstract:
The present invention relates to a voltage converter, which uses an inductor coupled between a power supply and a reference voltage for providing a supply voltage. A plurality of output capacitors are coupled to both sides of the inductor, respectively, and receive the supply voltage for producing a positive voltage and a negative voltage. A plurality of output switches are coupled to both sides of the inductor, respectively, and control the inductor to charge the plurality of output capacitors. A feedback control circuit produces a control signal according to the positive and negative voltages for controlling the plurality of output switches. Thereby, the present invention can produce positive and negative voltage by means of the inductor. Accordingly, the voltage converter according to the present invention avoids usage of multiple inductors and capacitors in producing voltages with different levels, and thus reducing the circuit area as well as the manufacturing cost.
Abstract:
The present invention provides a capacitor sensing circuit, comprising a driving unit, a switching unit, a differential integrator circuit, and a post-processing circuit. The driving unit is for providing driving signals and timing required by the capacitor sensing circuit, the switching unit switches signals according to two inverting timings, φ1 and φ2, the driving unit drives the capacitor sensing circuit, and together with the positive/negative input terminals of the differential integrator circuit, the signals are accumulated and integrated in both timing φ1 and φ2. The post-processing circuit receive the differential output of the differential integrator circuit for processing and/or utilizing the signals. The two timing signals are time-sharing signals in a period. Therefore, the capacitor sensing circuit is not effected by the common mode noise, and the accuracy and the sensibility are increased.