摘要:
In one embodiment, a network of nodes is configured to communicate according to a configuration of Available Routing Construct (ARC) chains as well as monitoring communication in the network, and/or selectively controls whether or not provisioned particular links will be used. One embodiment colors nodes of the network (e.g., a wireless deterministic network) along different paths through the network and marks packets with the color of each traversed node to track a path taken by a packet. One embodiment sends a particular packet through the network and marks over which links the packet traverses and aggregates these traversed links of other copies of the particular packet. One embodiment controls whether or not the provisioned time slots are used based on flooding a control packet through the network with enable or disable information for each of these links.
摘要:
One embodiment allocates and uses exclusive and overlapping transmission units in a network. One embodiment includes sending information, from a first network node in a network, during an exclusive transmission unit, wherein the exclusive transmission unit includes one or more wireless time slot-frequency pairings assigned to the first network node to send info nation without another assigned network transmission unit providing overlapping time slot-frequency interference from another network node communicating in the network. One embodiment includes sending information, from the first network node, during an overlapping transmission unit, wherein the overlapping transmission unit includes one or more wireless time slot-frequency pairings assigned to the first network node to send information, with the overlapping transmission unit overlapping in time slot-frequency with one or more other assigned network transmission units that will cause interference if simultaneously used.
摘要:
In one embodiment a limited functionality link state protocol node has one or two interfaces configured to send and receive link state protocol packets. In response to receiving, by the partially-participating link state protocol node on a first interface, a particular link state protocol data unit (LSP): sending the particular LSP from a second interface of the partially-participating link state protocol node without updating the local link state database when the second interface is currently participating in the link state protocol distribution; and sending an acknowledgment of the particular LSP from the first interface when the second interface is not currently participating in the link state protocol distribution.
摘要:
One embodiment includes a firewall, intrusion prevention, or other device that automatically and dynamically adjusts packets subjected to certain rate limiting based on the reputation level associated with these packets (e.g., based on the reputation score of the source of a packet). In response to measured traffic, one embodiment automatically adjusts the range of reputation scores determining which packets are subjected to this rate limiting (e.g., which packets are possibly dropped), such as, but not limited to increase or decrease the measured traffic. For example, packet traffic with a worse reputation can be singled out for this rate limiting during a period of increased traffic, and then when the measured traffic subsides, the range of reputation scores can be correspondingly changed to allow more measured traffic.
摘要:
In one embodiment, a packet switching device determines backup forwarding paths based on route distinguisher correlation values. A route distinguisher correlation value is some value associated with multiple routes, which allows a packet switching device to consider routes associated with a same route distinguisher correlation value, but having different route distinguishers and a same prefix to be considered as going to a same destination. Examples of route distinguisher correlation value used in one embodiment include, but are not limited to: scalar values, a route distinguisher of a different route, a virtual private network associated with a different route; a route target associated with the a different route; or a Border Gateway Protocol (BGP) Next-hop address associated with a different route.
摘要:
In one embodiment, a packet switching device sends packets to be sent from a single link of a bundled link interface to multiple egress network processing units (on a same or different line cards). A single one of these multiple egress network processing units is configured to be in the active mode sending particular sets of packets. The other egress network processing units are configured for these particular sets of packets to be in the non-active mode, and hence, will correspondingly drop these particular sets of packets. In case of failure, an egress network processing unit can quickly (e.g., changing a flag) be changed to the active mode to quickly reduce or eliminate loss of packets.
摘要:
In one embodiment, a packet switching device is configured to convert an Internet Protocol Version 6 (IPv6) destination address, of a received particular IPv6 packet, to a second, shorter destination address. This second destination address is then used to determine forwarding information for the received IPv6 packet, which is forwarded accordingly. In one embodiment, this second address is a 32-bit address, and in particular, an Internet Protocol Version 4 (IPv4) address. Thus, one embodiment can use the IPv4 forwarding infrastructure of a packet switching device for determining how to forward IPv6 packets. In a network according to one embodiment, packets are encapsulated in an IPv6 packet using an IPv6 destination address (that can be converted to an IPv4 address) of an egress edge packet switching device. Thus, core packet switching devices can forward IPv6 packets using IPv4 lookup operations.
摘要:
Data path processing information is included in the pseudowire layer of pseudowire packets in order to provide information for use in the data path processing of data (e.g., a packet), typically, but not always, included in the payload of the pseudowire packet itself. The pseudowire packet typically includes in corresponding fields: a pseudowire label for identifying a pseudowire type; a pseudowire control word; and payload data. The pseudowire type identifies the structure of the pseudowire control word field and the payload field, including the location of data path meta data, such as in the pseudowire control word field or payload field. This data path meta data identifies one or more attributes for use in processing the payload data.
摘要:
In providing seamless migration of virtual or physical devices among networks of a virtual local area network (VLAN) such as one spanning multiple data centers, a same virtual anycast Medium Access Control (VMAC) is used for reaching default gateways in virtual and/or physical devices. Each network is typically configured such that source MAC learning for the VMAC should happen only for packets coming from the local default gateway. In this manner, when a device is migrated between networks of the VLAN, the same IP address and corresponding MAC address (typically still residing in the MAC cache of the migrated device) can be used to reach the local default gateway.
摘要:
In response to a detected loss of previously transmitted information by an apparatus communicating with a remote device (e.g., using TCP), the rate of transmission of information is increased by the apparatus in response to attributing the detected loss of previously transmitted information as not being caused by congestion. This attribution of the packet loss is typically determined based on roundtrip delays between sent information and received corresponding acknowledgments, which may be used directly or indirectly, such as by estimating network queuing delays based on the measured roundtrip delays.