Abstract:
Disclosed is a process for the calcining and manufacturing of synthetic pozzolan with desirable color properties. Feed material is dried, crushed, and preheated in a drier crusher. The dry, crushed material is collected and fed to a calciner where it is heated to become a synthetic pozzolan. The synthetic pozzolan is then fed to a cooler where it is maintained for a least a portion of the cooling step in a reducing atmosphere.
Abstract:
Disclosed herein are embodiments of a vibrating screen (10) for separation of materials such as ores in mining, quarrying, and mineral processing. The vibrating screen (10) herein disclosed may include a chassis (100) with two side walls (102) with a plurality of support members (104) therebetween and a screen mounting system that receives screen panels (120). At least one of the side walls (102) may have a recess (132) that receives a protrusion (160) of a mounting plate (114) of a vibrator (126).
Abstract:
A mixer settler [1] comprises a settling tank [30], an organic launder [40] provided within the settling tank [30], an aqueous launder [50] provided within the settling tank [30], and an isolated aqueous weir box [70] which is positioned internally or externally relative to an outer profile of the mixer settler [1], the isolated aqueous weir box [70] being at least partially operatively isolated from the settling tank [30] by the aqueous launder [50]. The isolated aqueous weir box [70] comprises an adjustable weir [76] which separates a recycle chamber [72] from an advance chamber [74] therein. The organic launder [40] is operably connected to an organic advance effluent pipe [80], and the aqueous launder [50] is operably connected to the isolated aqueous weir box [70]. The organic launder [40] may be operably connected to an isolated organic weir box [60] which is separate from the isolated aqueous weir box [70], and may further comprise an adjustable weir [66] which separates a collection chamber [62] from an advance chamber [64]. Also disclosed, is a kit for modifying or fabricating a mixer settler [1], as well as a solvent extraction process.
Abstract:
An adjustable vacuum pan assembly [190] for a belt filter [900] is disclosed. The adjustable vacuum pan assembly [190] comprises an arm [140] configured to be attached to a frame portion [930] of the filter [900], a vacuum pan [150] adjustably connected to the arm [140], and a cam [170] operatively coupled to the arm [140]. The cam [170] is rotatable with respect to the arm [140] and has a peripheral surface which contacts a portion [157] of the vacuum pan [150]. The assembly [190] further comprises a locking member [169] which serves to hold the cam [170] against rotation with respect to the arm [140]. Varying an angular rotational position of the cam [170] effectively varies a spacing between the vacuum pan [150] and the arm [140], thereby providing an amount of misalignment compensation therebetween. Retrofit kits for a preexisting conventional filter [900] and methods of providing increased adjustability to a filter [900] are also disclosed.
Abstract:
Described is a method for assembling a gyratory crusher (1) where a main shaft arrangement (2) having a main shaft (3) with a midmost axial portion enclosed by a first crushing surface (4) is lowered axially from a free-hanging position down into a centrally positioned bushing (5) which provides guidance and support for the main shaft (3) where at least a portion of the bushing (5) is located below the first crushing surface (4) which is configured for interaction with an opposite second crushing surface (6). The method is characterized in that the method comprises the steps of mounting guiding means (7) on the main shaft arrangement (2) prior to guiding the main shaft (3) into the bushing (5) where the guiding means (7) protrude radially in relation to the centre axis of the main shaft (3) to such an extent that the guiding means (7) are visible when viewed from an axial top position over the main shaft arrangement (2), and having an operator with a view from the axial top position to lower the main shaft (3) down into the bushing (5) while observing the relationship between the second wear surface (6) and the guiding means (7).
Abstract:
A mobile crushing station for receiving and comminuting excavated material from earth moving vehicles provides at least one moveable skip connected to a chassis or frame for receiving material from vehicles, such as rear unloading vehicles like dump trucks. The skips are configured to move to dump material fed into the skips into a feed hopper. The feed hopper is positioned to guide material onto a feed conveyor, such as an inclined apron conveyor. The feed conveyor is configured to transport material to a feed orifice of a crushing device, such as a sizer, a crusher, or a crushing circuit. The crushing device is configured to crush material fed into the crushing device. The crushing device also has a discharge orifice that is positioned above a portion of a discharge conveyor. The mobile crushing station is moveable so it may be repositioned closer to an excavation site as excavation activities progress.
Abstract:
A conveyor belt scale (1) for transporting and weighing bulk material, having a rocker (6) that acts on a rod system (9), and having a weighing cell (11) connected with the rod system (9), is supposed to be configured in such a manner that the weighing cell, in particular, can also be reached from the outside.This is achieved in that the conveyor belt (2) is surrounded by a pressure-resistant, explosion-protected housing (7), whereby the rod system (9) that acts on the weighing cell (11) is passed out of the housing (7) by way of at least one elastic bearing (10) having a pressure-resistant seal, whereby the weighing cell (11) is positioned outside of the housing (7).
Abstract:
An open-channel infeed conduit of a feed dilution system of a thickener/clarifier settling tank is provided with orifices between its upstream inlet end and its outlet end. The orifices are positioned proximate to and in fluid communication with the clarified liquid phase in the tank to draw clarified liquid from the tank into the conduit responsive to or by virtue of momentum transfer between the flow of the liquid slurry feed stream in the conduit and the clarified liquid in the tank.
Abstract:
Described is a method as well as an apparatus for incineration of combustible waste during the manufacture of cement clinker by which method the waste is introduced via a waste inlet (11) and supported on a supporting surface (21) incorporated in a separate compartment (9), where the waste being actively transported, while simultaneously subjected to incineration, through the compartment to its outlet (23), where the hot exhaust gases produced in connection with the incineration of the waste being vented to the preheater system for heating the cement raw meal, and where the slag generated during the waste incineration process being extracted from the compartment (9). The method and the apparatus are peculiar in that exhaust gases containing NOx are introduced to the compartment (9).
Abstract:
The overflow and underflow effluents of a conventional hydrocyclone are discharged into enclosed vessels, so that the operating pressure may be manipulated for each effluent independently of other operating parameters. Each of the effluent vessels is equipped with a source of pressurized gas to form a gas blanket over the effluent at a controllable pressure. Such variable pressures in each vessel, in combination with the pressure of the incoming feed stream, provide the necessary parameters to implement pressure-differential-ratio control, thereby improving the efficiency of separation.