摘要:
Efficient sequence specific gene silencing is possible through the use of siRNA technology. By selecting particular siRNAs by rational design, one can maximize the generation of an effective gene silencing reagent, as well as methods for silencing genes. Methods, compositions, and kits generated through rational design of siRNAs are disclosed.
摘要:
Efficient sequence specific gene silencing is possible through the use of siRNA technology. By selecting particular siRNAs by rational design, one can maximize the generation of an effective gene silencing reagent, as well as methods for silencing genes. Methods, compositions, and kits generated through rational design of siRNAs are disclosed including those directed to nucleotide sequences for APP.
摘要:
Efficient sequence specific gene silencing is possible through the use of siRNA technology. By selecting particular siRNAs by rational design, one can maximize the generation of an effective gene silencing reagent, as well as methods for silencing genes. Methods, compositions, and kits generated through rational design of siRNAs are disclosed including those directed to nucleotide sequences for proto-oncogene MET.
摘要:
The invention relates to a process for the coating of a catalyst support with a catalytically active coat using a coating dispersion, the catalyst support containing at least two partial structures which differ in their absorptivity for the coating dispersion. The process is characterized in that the absorptivity of the partial structures is modified relative to one another by precoating of the catalyst support with a material which can be burnt out or with liquid, and the catalytic coat is then applied to the filter body in a known manner, dried and/or calcined.
摘要:
When a nitrogen oxide storage catalyst is being regenerated, the regeneration may be terminated for example as a result of a premature load change in the engine, which can lead to incomplete emptying of the storage catalyst. The residual filling level which remains in the catalyst following an incomplete regeneration of this nature is used as the starting value for calculation of the filling level during the next storage phase. After incomplete regeneration, the nitrogen oxide conversion rate is initially greater than would be expected, on account of the residual filling level. By taking this increased conversion rate into account when calculating the filling level during the storage phase, it is possible to further improve the accuracy of the calculation.
摘要:
Efficient sequence specific gene silencing is possible through the use of siRNA technology. By selecting particular siRNAs by rational design, one can maximize the generation of an effective gene silencing reagent, as well as methods for silencing genes. Methods, compositions, and kits generated through rational design of siRNAs are disclosed including those directed to STK12.