Abstract:
The present invention generally relates to an apparatus, method, system for the determination of the aggregation rate of red blood cells. More specifically, the invention concerns a method, system, and the relative apparatus used to determine the aggregation rate of red blood cells, and other parameters related to these, such as viscosity, deformability, elasticity, density, in the field of in vitro medical analyses, using optical systems after or during inducted forces for red blood cell disruption and redistribution generated by ultrasound waves.
Abstract:
Systems and methods for the determination of the aggregation rate of red blood cells. More specifically, the subject technology is used to determine the aggregation rate of red blood cells, and other parameters related to these, such as viscosity, deformability, elasticity, density, in the field of in vitro medical analyses, using optical systems after or during vibration for red blood cell disruption and redistribution. Once the detected light variation stops decreasing (e.g., a minimum is reached), complete disruption is accomplished for evaluation of the blood sample.
Abstract:
An enteral pump system for delivering medical fluids unidirectionally includes a disposable fluid delivery set having a repeatable compression portion and an enteral feeding pump. The repeatable compression portion is helically coiled around a central axis to define a cylindrical shape. The compression portion is configured to pump a large volume of medical fluids per stroke. The compressing portion includes at least two adjacent tubing walls joined around the central axis for repeatable compression. The enteral feeding pump is configured to repeatedly and reliably compress the compression portion of the fluid delivery set along the central axis. In operation, the compression portion is repeatably compressed without distortion along the central axis by the enteral feeding pump to flow unidirectionally through the fluid delivery set.
Abstract:
The present invention generally relates to an apparatus, method, system for the determination of the aggregation rate of red blood cells. More specifically, the invention concerns a method, system, and the relative apparatus used to determine the aggregation rate of red blood cells, and other parameters related to these, such as viscosity, deformability, elasticity, density, in the field of in vitro medical analyses, using optical systems after or during inducted forces for red blood cell disruption and redistribution generated by ultrasound waves.
Abstract:
The present invention generally relates to an apparatus, method, system for the determination of the aggregation rate of red blood cells. More specifically, the invention concerns a method, system, and the relative apparatus used to determine the aggregation rate of red blood cells, and other parameters related to these, such as viscosity, deformability, elasticity, density, in the field of in vitro medical analyses, using optical systems after or during inducted forces for red blood cell disruption and redistribution generated by ultrasound waves.
Abstract:
A flow sensor system for detecting the presence or absence of flow of a liquid nutrient formula through a conduit of an enteral feeding system. The flow sensor system includes a channel configured to retain the conduit therein, a heat source disposed at a first location at a first portion of the conduit, and a heat detector disposed at a second location at a second portion of the conduit. The heat source may include an IR LED, and the heat detector may include a thermopile sensor. A method for using the flow sensor system to detect the presence or absence of flow of a liquid nutrient formula through a conduit of an enteral feeding system is also disclosed.
Abstract:
The present invention generally relates to an apparatus, method, system for the determination of the aggregation rate of red blood cells. More specifically, the invention concerns a method, system, and the relative apparatus used to determine the aggregation rate of red blood cells, and other parameters related to these, such as viscosity, deformability, elasticity, density, in the field of in vitro medical analyses, using optical systems after or during inducted forces for red blood cell disruption and redistribution generated by ultrasound waves.