摘要:
Techniques for minimizing coprocessor “starvation,” and for effectively scheduling processing in a coprocessor for greater efficiency and power. A run list is provided allowing a coprocessor to switch from one task to the next, without waiting for CPU intervention. A method called “surface faulting” allows a coprocessor to fault at the beginning of a large task rather than somewhere in the middle of the task. DMA control instructions, namely a “fence,” a “trap” and a “enable/disable context switching,” can be inserted into a processing stream to cause a coprocessor to perform tasks that enhance coprocessor efficiency and power. These instructions can also be used to build high-level synchronization objects. Finally, a “flip” technique is described that can switch a base reference for a display from one location to another, thereby changing the entire display surface.
摘要:
Systems and methods are provided for scheduling the processing of a coprocessor whereby applications can submit tasks to a scheduler, and the scheduler can determine how much processing each application is entitled to as well as an order for processing. In connection with this process, tasks that require processing can be stored in physical memory or in virtual memory that is managed by a memory manager. The invention also provides various techniques of determining whether a particular task is ready for processing. A “run list” may be employed to ensure that the coprocessor does not waste time between tasks or after an interruption. The invention also provides techniques for ensuring the security of a computer system, by not allowing applications to modify portions of memory that are integral to maintaining the proper functioning of system operations.
摘要:
Atlasing and virtual surface techniques are described. In one or more implementations, virtual surface functionality is exposed by an operating system for access by one or more applications of the computing device. A virtual surface is created in response to a request from the one or more applications to be used to render visuals for display by a display device. The virtual surface is allocated in memory of the computing device by the exposed virtual surface functionality to have an area that is larger than an area to be used to display the visuals from the one or more applications.
摘要:
Systems and methods are provided for scheduling the processing of a coprocessor whereby applications can submit tasks to a scheduler, and the scheduler can determine how much processing each application is entitled to as well as an order for processing. In connection with this process, tasks that require processing can be stored in physical memory or in virtual memory that is managed by a memory manager. The invention also provides various techniques of determining whether a particular task is ready for processing. A “run list” may be employed to ensure that the coprocessor does not waste time between tasks or after an interruption. The invention also provides techniques for ensuring the security of a computer system, by not allowing applications to modify portions of memory that are integral to maintaining the proper functioning of system operations.
摘要:
Systems and methods that independently control divided and/or isolated processing resources of a Graphical Processing Unit (GPU). Synchronization primitives for processing are shared among such resources to process interaction with the engines and their associated different requirements (e.g. different language). Accordingly, independent threads can be created against particular nodes (e.g., a video engine node, 3D engine node), wherein multiple engines can exist under a single node, and independent control can subsequently be exerted upon the plurality of engines associated with the GPU.
摘要:
Complex computer graphics forms and motions can be constructed either by hand or with motion or geometry capture technologies, once they are created, they are difficult to modify, particularly at runtime. Interpolation provides a way to leverage artist-generated source material. Methodologies for efficient runtime interpolation between multiple forms or multiple motion segments enables computers to perform more realistic animation in real-time. Shape interpolation is applied to predefined figures to create smoothly skinned figures that deform in natural ways. Predefined figures are selected using a search technique that reduces the amount of interpolation required to produce real-time animation.
摘要:
An API is provided to automatically transition data objects or containers between memory types to enable the seamless switching of data. The switching of data containers from one location to another is performed automatically by the API. Thus, polygon or pixel data objects are automatically transitioned between memory types such that the switching is seamless. It appears to a developer as if the data chunks/containers last forever, whereas in reality, the API hides the fact that the data is being transitioned to optimize system performance. The API hides an optimal cache managing algorithm from the developer so that the developer need not be concerned with the optimal tradeoff of system resources, and so that efficient switching of data can take place ‘behind the scenes’, thereby simplifying the developer's task. Data containers are thus efficiently placed in storage to maximize data processing rates and storage space, whether a data container is newly created or switched from one location to another.
摘要:
Usage semantics allow for shaders to be authored independently of the actual vertex data and accordingly enables their reuse. Usage semantics define a feature that binds data between distinct components to allow them to work together. In various embodiments, the components include high level language variables that are bound by an application or by vertex data streams, high level language fragments to enable several fragments to be developed separately and compiled at a later time together to form a single shader, assembly language variables that get bound to vertex data streams, and parameters between vertex and pixel shaders. This allows developers to be able to program the shaders in the assembly and high level language with variables that refer to names rather than registers. By allowing this decoupling of registers from the language, developers can work on the language separately from the vertex data and modify and enhance high level language shaders without having to manually manipulate the registers. This also allows the same shaders to work on different sets of mesh data, allowing the shaders to be reused. Generally, semantics can be used as a data binding protocol between distinct areas of the programmable pipeline to allow for a more flexible workflow.
摘要:
An API is provided to automatically transition data objects or containers between memory types to enable the seamless switching of data. The switching of data containers from one location to another is performed automatically by the API. Thus, polygon or pixel data objects are automatically transitioned between memory types such that the switching is seamless. It appears to a developer as if the data chunks/containers last forever, whereas in reality, the API hides the fact that the data is being transitioned to optimize system performance. The API hides an optimal cache managing algorithm from the developer so that the developer need not be concerned with the optimal tradeoff of system resources, and so that efficient switching of data can take place ‘behind the scenes’, thereby simplifying the developer's task. Data containers are thus efficiently placed in storage to maximize data processing rates and storage space, whether a data container is newly created or switched from one location to another.