Abstract:
A flat panel display glass substrate according to the present invention includes a glass comprising, as expressed in mol %, 55-80% SiO2, 3-20% Al2O3, 3-15% B2O3, 3-25% RO (the total amount of MgO, CaO, SrO, and BaO), and substantially no As2O3, and Sb2O3. The devitrification temperature of the glass is 1250° C. or less. The glass substrate has a heat shrinkage rate of 75 ppm or less. The heat shrinkage rate is calculated from the amount of shrinkage of the glass substrate measured after a heat treatment which is performed at a temperature rising and falling rate of 10° C./min and at 550° C. for 2 hours by the heat shrinkage rate (ppm)={the amount of shrinkage of the glass substrate after the heat treatment/the length of the glass substrate before the heat treatment}×106.
Abstract translation:根据本发明的平板显示器玻璃基板包括玻璃,其以摩尔%表示,为55-80%SiO 2,3-20%Al 2 O 3,3-15%B 2 O 3,3-25%RO(总量 MgO,CaO,SrO和BaO),并且基本上不含As2O3和Sb2O3。 玻璃的失透温度为1250℃以下。 玻璃基板的热收缩率为75ppm以下。 热收缩率由热处理后测定的玻璃基板的收缩量,以10℃/分钟和550℃的升温和降温率,通过热收缩率进行2小时计算 速率(ppm)= {热处理后的玻璃基板的收缩量/热处理前的玻璃基板的长度}×106。
Abstract:
A method for manufacturing a glass substrate for a display includes a step of producing a glass substrate and a step of performing a surface treatment on one glass surface of major surfaces of the glass substrate to form surface unevenness. The surface treatment is performed such that protruded portions having a height of 1 nm or more from the surface roughness central plane of the surface unevenness are dispersedly provided on the glass surface after the surface treatment and the area ratio of the protruded portions with respect to the area of the glass surface is 0.5-10%. Using this glass substrate, semiconductor elements are formed on a major surface of the glass substrate opposite to the glass surface. Accordingly, a display panel is produced.
Abstract:
A method for manufacturing a glass substrate for a display includes a step of producing a glass substrate and a step of performing a surface treatment on one glass surface of major surfaces of the glass substrate to form surface unevenness. The surface treatment is performed such that protruded portions having a height of 1 nm or more from the surface roughness central plane of the surface unevenness are dispersedly provided on the glass surface after the surface treatment and the area ratio of the protruded portions with respect to the area of the glass surface is 0.5-10%. Using this glass substrate, semiconductor elements are formed on a major surface of the glass substrate opposite to the glass surface. Accordingly, a display panel is produced.
Abstract:
A flat panel display glass substrate according to the present invention includes a glass comprising, as expressed in mol %, 55-80% SiO2, 3-20% Al2O3, 3-15% B2O3, 3-25% RO (the total amount of MgO, CaO, SrO, and BaO), and substantially no As2O3, and Sb2O3. The devitrification temperature of the glass is 1250° C. or less. The glass substrate has a heat shrinkage rate of 75 ppm or less. The heat shrinkage rate is calculated from the amount of shrinkage of the glass substrate measured after a heat treatment which is performed at a temperature rising and falling rate of 10° C./min and at 550° C. for 2 hours by the heat shrinkage rate (ppm)={the amount of shrinkage of the glass substrate after the heat treatment/the length of the glass substrate before the heat treatment}×106.
Abstract translation:根据本发明的平板显示器玻璃基板包括玻璃,其以摩尔%表示,为55-80%SiO 2,3-20%Al 2 O 3,3-15%B 2 O 3,3-25%RO(总量 MgO,CaO,SrO和BaO),并且基本上不含As2O3和Sb2O3。 玻璃的失透温度为1250℃或更低。 玻璃基板的热收缩率为75ppm以下。 热收缩率由热处理后测定的玻璃基板的收缩量,以10℃/分钟和550℃的升温和降温率通过热收缩率进行2小时计算 速率(ppm)= {热处理后的玻璃基板的收缩量/热处理前的玻璃基板的长度}×106。
Abstract:
A glass substrate for a display, which is formed of a glass having a light weight and having high refinability with decreasing environmental burdens, the glass comprising, by mass %, 50 to 70% of SiO2, 5 to 18% of B2O3, 10 to 25% of Al2O3, 0 to 10% of MgO, 0 to 20% of CaO, 0 to 20% of SrO, 0 to 10% of BaO, 5 to 20% of RO (in which R is at least one member selected from the group consisting of Mg, Ca, Sr and Ba), and over 0.20% but not more than 2.0% of R′2O (in which R′ is at least one member selected from the group consisting of Li, Na and K), and containing, by mass %, 0.05 to 1.5% of oxide of metal that changes in valence number in a molten glass, and substantially containing none of As2O3, Sb2O3 and PbO.
Abstract translation:一种显示器用玻璃基板,其由重量轻且具有降低的环境负荷的高可熔性的玻璃形成,所述玻璃以质量%计含有50〜70%的SiO 2,5〜18%的B 2 O 3,10〜 25%的Al 2 O 3,0〜10%的MgO,0〜20%的CaO,0〜20%的SrO,0〜10%的BaO,5〜20%的RO(其中R为选自 由Mg,Ca,Sr和Ba组成的组)和超过0.20%但不超过2.0%的R'2O(其中R'为选自Li,Na和K中的至少一种), 并且以质量%计含有熔融玻璃中价数变化的金属氧化物的0.05〜1.5%,并且基本上不含有As 2 O 3,Sb 2 O 3和PbO。
Abstract:
A method for manufacturing a glass substrate for a display includes a step of producing a glass substrate and a step of performing a surface treatment on one glass surface of major surfaces of the glass substrate to form surface unevenness. The surface treatment is performed such that protruded portions having a height of 1 nm or more from the surface roughness central plane of the surface unevenness are dispersedly provided on the glass surface after the surface treatment and the area ratio of the protruded portions with respect to the area of the glass surface is 0.5-10%. Using this glass substrate, semiconductor elements are formed on a major surface of the glass substrate opposite to the glass surface. Accordingly, a display panel is produced.
Abstract:
A glass substrate that achieves a high strain point while having a low devitrification temperature; and a method for producing the glass substrate. This glass substrate for a display is made of a glass comprising SiO2 and Al2O3, comprising 0% or more to less than 4% B2O3 in mass %, and substantially devoiding Sb2O3, wherein 3×BaO/(MgO+CaO+SrO) is 5 or less, MgO/(CaO+SrO) is 0.36 or greater, the devitrification temperature is 1235° C. or lower, and the strain point is 700° C. or higher. The method comprises: melting, by using at least direct electrical heating, a glass material prepared to have a predetermined composition; forming, into a flat glass sheet, the molten glass that has been melted in the melting step; and annealing the flat glass sheet, wherein a condition for cooling the flat glass sheet is controlled so as to reduce the heat shrinkage rate of the flat glass sheet.
Abstract:
A glass substrate that achieves a high strain point while having a low devitrification temperature; and a method for producing the glass substrate. This glass substrate for a display is made of a glass comprising SiO2 and Al2O3, comprising 0% or more to less than 4% B2O3 in mass %, and substantially devoiding Sb2O3, wherein 3×BaO/(MgO+CaO+SrO) is 5 or less, MgO/(CaO+SrO) is 0.36 or greater, the devitrification temperature is 1235° C. or lower, and the strain point is 700° C. or higher. The method comprises: melting, by using at least direct electrical heating, a glass material prepared to have a predetermined composition; forming, into a flat glass sheet, the molten glass that has been melted in the melting step; and annealing the flat glass sheet, wherein a condition for cooling the flat glass sheet is controlled so as to reduce the heat shrinkage rate of the flat glass sheet.
Abstract:
A method for manufacturing a glass substrate comprises a surface processing step of performing surface processing for forming unevenness on a glass surface. In the surface processing step, protruded portions having a height of 1 nm or more from an average line of a roughness curve are dispersedly formed on the glass surface. In the surface processing step, the surface processing is performed such that a protruded portion area ratio is 0.5 to 10%. The protruded portion area ratio is a ratio of an area of the protruded portions with respect to an area of any rectangular region. The rectangular region has a square shape with a side length of 1 μm. In the surface processing step, in a case where the rectangular region is equally divided into at least one hundred divided regions having a square shape, the surface processing is performed such that a protruded portion content ratio is 80% or more. The protruded portion content ratio is a ratio of the number of divided regions having the protruded portions with respect to the number of divided regions included in the rectangular region.
Abstract:
A glass-plate manufacturing method employing a down-draw process includes: a forming step of forming a sheet glass by making a molten glass flow downward along opposite side surfaces of a forming member and merge at a lower section of the forming member; and a cooling step of cooling the sheet glass while drawing the sheet glass downward with rollers. In the cooling step, an above-glass-strain-point temperature control step is performed which is a step of performing a temperature control in the width direction of the sheet glass in a temperature region ranging from the lower section of the forming member to where the temperature of the sheet glass falls below a temperature region near the glass strain point, and includes: first, second and third temperature control steps as defined herein.