摘要:
The aim of the invention is to determine the actual position and/or actual orientation of a measuring appliance (4b). To this end, at least two reference points (2b′) lying in a spatial segment (5′) scanned by a laser beam are detected and measured in terms of the distance thereinbetween and the inclination angle thereof. The actual position of the measuring appliance (4b) can be deduced from the known positions of said reference points (2b′) arranged in a detectable manner and the associated distances and inclination angle thereof. The detection, monitoring and measuring of the reference points is carried out by the measuring appliance (4b) in an automated manner, the measuring appliance (4b) and specifically embodied elements associated with the reference points (2b′) forming a local positioning and/or orientation measuring system. The inventive method and corresponding devices enable measurements to be carried out in a problem-free and automated manner, even in areas that cannot be accessed by other measuring systems.
摘要:
The invention relates to a method for determining the spatial and rotational positions of an object. With the assistance of an imaging optical system, the object is mapped and detected on a high-sensitivity resolution optoelectronic detector. The location parameter of the object, such as the position vector ({overscore (r)}0), the direction vector ({overscore (&ngr;)}) of the object axis, and the angle (&kgr;) of rotation of the object around the object axis is determined from the planar position of the mapped object structures in the coordinate system (XDet, YDet) of the detector by means of geometric optical relationships and mathematical evaluation methods. With this, the spatial position of the object is determined in a quick and contactless manner.
摘要:
An object is highly precisely moved by an industrial robot to an end position by the following steps, which are repeated until the end position is reached within a specified tolerance: Recording a three-dimensional image by means of a 3-D image recording device. Determining the present position of the object in the spatial coordinate system from the position of the 3-D image recording device the angular orientation of the 3-D image recording device detected by an angle measuring unit, the three-dimensional image, and the knowledge of features on the object. Calculating the position difference between the present position of the object and the end position. Calculating a new target position of the industrial robot while taking into consideration the compensation value from the present position of the industrial robot and a value linked to the position difference. Moving the industrial robot to the new target position.
摘要:
The invention relates to a method and a system for the high-precision positioning of at least one object in a final location in space. An object (12) is gripped and held by the industrial robot (11) within a gripping tolerance. A compensating variable, which corrects the gripping tolerance, is determined for the industrial robot (11). The object (12) is adjusted with high precision into a final location by the following steps, which repeat until reaching the final location at a predetermined tolerance: recording of image recordings by recording units (1a, 1b); determining the current location of the object (12) in the spatial coordinate system from the positions (Pa, Pb) of the recording units (1a, 1b), the angular orientations of cameras (2a, 2b) of the recording units (1a, 1b) which are detected by angle measuring units (4a, 4b), the image recordings, and the knowledge of features (13) on the object (12); calculating the location difference between the current location of the object (12) and the final location; calculating a new target position of the industrial robot (11) in consideration of the compensating variable from the current position of the industrial robot (11) and a variable which is linked to the location difference; adjusting the industrial robot (11) into the new target position.
摘要:
An object is highly precisely moved by an industrial robot to an end position by the following steps, which are repeated until the end position is reached within a specified tolerance: Recording a three-dimensional image by means of a 3-D image recording device. Determining the present position of the object in the spatial coordinate system from the position of the 3-D image recording device the angular orientation of the 3-D image recording device detected by an angle measuring unit, the three-dimensional image, and the knowledge of features on the object. Calculating the position difference between the present position of the object and the end position. Calculating a new target position of the industrial robot while taking into consideration the compensation value from the present position of the industrial robot and a value linked to the position difference. Moving the industrial robot to the new target position.
摘要:
The invention relates to a method for determining at least one influencing variable acting on the eccentricity in a goniometer, using a detector arrangement consisting of four optical detector elements, and a rotational body comprising a plurality of pattern elements arranged around a pattern center, the rotational body being rotatably arranged about an axis. According to said method, at least some of the pattern elements are reproduced on the detector arrangement, the positions of the pattern elements reproduced on the detector arrangement are resolved, and the eccentricity of the pattern center in relation to a detector center of the detector arrangement is determined. A plurality of such eccentricity measurements for different rotational positions enables different influencing variables acting on the current eccentricity to be separated, especially by forming units.
摘要:
An optoelectric angle-measuring device has a code carrier having a position code which can be detected optically as well as a scanning device in the form of a light-sensitive row or area for detecting the position code and generating a position-dependent scanning signal. The scanning device which is in the form of a scanning film, in particular, surrounds the code carrier or the code carrier essentially completely surrounds the scanning device along a circumference. This provides an extremely accurate angle-measuring device by virtue of the fact that a large part of the position code, in particular even the entire position code, can be detected.
摘要:
The aim of the invention is to determine the actual position and/or actual orientation of a measuring appliance (4b). To this end, at least two reference points (2b′) lying in a spatial segment (5′) scanned by a laser beam are detected and measured in terms of the distance thereinbetween and the inclination angle thereof. The actual position of the measuring appliance (4b) can be deduced from the known positions of said reference points (2b′) arranged in a detectable manner and the associated distances and inclination angle thereof. The detection, monitoring and measuring of the reference points is carried out by the measuring appliance (4b) in an automated manner, the measuring appliance (4b) and specifically embodied elements associated with the reference points (2b′) forming a local positioning and/or orientation measuring system. The inventive method and corresponding devices enable measurements to be carried out in a problem-free and automated manner, even in areas that cannot be accessed by other measuring systems.
摘要:
The invention relates to an electro-optical distance measuring method wherein frequency-modulated optical radiation is emitted onto at least one target to be measured. Once the radiation back-scattered to the target is received, the chirp of radiation is modeled by means of a phase function Φ(t) having parameters cj, thereby making description of the deviation of the chirp from the linear profile possible. The parameters used for description are at least partially determined from measurements or are coestimated during numerical signal processing.
摘要:
The invention relates to a positioning method for determining the position and orientation of a mobile unit having a receiver (3′, whereby the receiver (3) is detected by a scanner (2), said scanner (2′ determining at least the distance and a direction in relation to the receiver (3). The radiation emitted by the sensor is detected by the receiver (3′ and the direction of incidence of radiation and the direction of incidence of radiation in relation to an axis of reception are derived while an offset of the incident radiation in relation to the axis of reception (EA) is determined. Position and orientation of the unit are derived from at least the distance, the direction in relation to the receiver (3′), the offset and the direction of incidence as the position information and the unit is optionally controlled via the optical connection (OV).