摘要:
An object is highly precisely moved by an industrial robot to an end position by the following steps, which are repeated until the end position is reached within a specified tolerance: Recording a three-dimensional image by means of a 3-D image recording device. Determining the present position of the object in the spatial coordinate system from the position of the 3-D image recording device the angular orientation of the 3-D image recording device detected by an angle measuring unit, the three-dimensional image, and the knowledge of features on the object. Calculating the position difference between the present position of the object and the end position. Calculating a new target position of the industrial robot while taking into consideration the compensation value from the present position of the industrial robot and a value linked to the position difference. Moving the industrial robot to the new target position.
摘要:
A robot system includes camera, a distance direction sensor and a controller. The controller is configured to store a plurality of instruction images obtained as a target of the real-time image at each of a plurality of discrete instruction points provided on a predetermined running path. The controller is configured to switch, on the basis of predetermined switching conditions, between an image guidance mode in which the controller controls a running subsystem on the basis of a comparison result between the real-time image and the instruction image, and a measurement distance guidance mode in which the controller controls the running subsystem on the basis of a detection result of the distance direction sensor.
摘要:
An object is highly precisely moved by an industrial robot to an end position by the following steps, which are repeated until the end position is reached within a specified tolerance: Recording a three-dimensional image by means of a 3-D image recording device. Determining the present position of the object in the spatial coordinate system from the position of the 3-D image recording device the angular orientation of the 3-D image recording device detected by an angle measuring unit, the three-dimensional image, and the knowledge of features on the object. Calculating the position difference between the present position of the object and the end position. Calculating a new target position of the industrial robot while taking into consideration the compensation value from the present position of the industrial robot and a value linked to the position difference. Moving the industrial robot to the new target position.
摘要:
An industrial robot is used to assemble a part to a predetermined location on a randomly moving workpiece. The workpiece may be an automobile on an assembly line and the part may be a wheel (a tire mounted on a rim) to be assembled on one of the wheel hubs of the automobile. The robot has mounted on it a camera, a force sensor and a gripper to grip the part. After the robot grips the part, signals from both the force sensor and vision are used by a computing device to move the robot to a position where the robot can assemble the part to the predetermined location on the workpiece. The computing device can be the robot controller or a separate device such as a PC that is connected to the controller.
摘要:
In a method for controlling an orienting/positioning system, the orienting system comprises at least one sensor means, an external motion detection device for detecting an externally-caused motion in the environment of the sensor means and actuator means for controlling an orienting and/or positioning action of the sensor means. The method comprises the steps of: (a) Evaluating pre-action output information of said sensor means in order to detect the position of a pattern in the input space of the sensor means; (b) Deciding on a targeted post-action position of said pattern in the input space of said sensor means; (c) Defining a command for the actuator means by mapping any deviation of the pre-action position and the targeted post-action position in the input space coordinates of the sensor-means to actuator control coordinates using a predefined mapping function; (d) Orienting/Positioning the sensor means by the actuator means according to the defined command in order to carry out an orienting/positioning action; (e) Detecting the real post-action position of the patterns in the input space of said sensor means; (f) Detecting external motion of the pattern; and (g) Adapting the mapping function used in step (c), wherein steps (a) to (g) are repeated using the respectively adapted mapping function. An output signal from the external-motion detection device can be used to control the adaptation step (g).
摘要:
A sensing unit, such as a camera, or the like, senses the conditions of articles and mobile existences, including humans, in a life space, such as a house of a household, or the like. An article management/operation server manages, on an article database, attribute information of the articles, which include operators, etc., according to the information from the sensing unit. The server receives a user's instruction input through a console unit and refers to the article database to convert this instruction to a control command, which is then transmitted to a life-support robot.
摘要:
A system for and a method of recognizing and tracking a target mark with a video camera is disclosed. The system includes a target mark (10) disposed on an object (1) and composed of a black circle and a white triangle mounted centrally on the black circle and three-dimensionally shifted from the black circle, a video camera (20) for imaging the target mark (10), a robot (30) supporting the video camera (20) and movable in directions with six degrees of freedom, an image processor (40) for processing image data of the target mark which is produced by the video camera (20), a shift calculating unit (50) for detecting a shift of the target mark (10) from projected histogram information of the target mark (10) which is produced by the image processor (40), and a robot controller (60) for controlling movement of the robot depending on the shift to enable the video camera (20) to track the target mark (10). The system is capable of tracking the target mark (20) attached to the object (1) on a real-time basis. Mark recognizing apparatus capable of accurately recognizing target marks of other shapes is also disclosed.
摘要:
A telerobotic system adapted for tracking and handling a moving object comprises a robot manipulator, a video monitor, an image processor, hand controls and a computer. The robot manipulator comprises a movable robotic arm having an effector for handling an object, a drive system for moving the arm in response to arm input signals, sensors for sensing the position of the arm and for generating arm output signals which characterize the dynamic motion behavior of the arm, and a vid=eo camera carried by the arm. The camera responds to motion of the moving object within the field of view of the camera. The video monitor receives an input video signal from the video camera, for displaying an image of the object to a human operator. The image processor is responsive to the output signal of the camera, and is capable of acquiring and pre-processing an image of the object on a frame by frame basis. The hand control is capable of generating a hand control output signal in response to input from a human operator. The computer generates arm input signals and is disposed between the hand control means, the robot manipulator, and image processor. The computer receives (i) output signals from the image processor and (ii) the arm output signals and (iii) the hand control output signal and generates arm input signals in response to the received signals whereby the arm tracks the motion of the object.
摘要:
Methods include one or more of robotically positioning a cutting element on an earth-boring tool, using a power-driven device to move a cutting element on an earth-boring tool, and robotically applying a bonding material for attaching a cutting element to an earth-boring tool. Robotic systems are used to robotically position a cutting element on an earth-boring tool. Systems for orienting a cutting element relative to a tool body include a power-driven device for moving a cutting element on or adjacent the tool body. Systems for positioning and orienting a cutting element on an earth-boring tool include such a power-driven device and a robot for carrying a cutting element. Systems for attaching a cutting element to an earth-boring tool include a robot carrying a torch for heating at least one of a cutting element, a tool body, and a bonding material.
摘要:
Methods include one or more of robotically positioning a cutting element on an earth-boring tool, using a power-driven device to move a cutting element on an earth-boring tool, and robotically applying a bonding material for attaching a cutting element to an earth-boring tool. Robotic systems are used to robotically position a cutting element on an earth-boring tool. Systems for orienting a cutting element relative to a tool body include a power-driven device for moving a cutting element on or adjacent the tool body. Systems for positioning and orienting a cutting element on an earth-boring tool include such a power-driven device and a robot for carrying a cutting element. Systems for attaching a cutting element to an earth-boring tool include a robot carrying a torch for heating at least one of a cutting element, a tool body, and a bonding material.