摘要:
An irradiation apparatus includes a light source unit to emit light, a light condenser, disposed on a light path of the light emitted from the light source unit, to condense the light emitted from the light source unit, a first diffuser, disposed on a light path of the light exiting from the light condenser, to diffuse the light condensed by the light condenser, an optical equalizer, disposed downstream of the first diffuser, to equalize a luminance distribution of the light entering the optical equalizer from the first diffuser and to output the light having the equalized luminance distribution, and a second diffuser, disposed downstream of the optical equalizer, to diffuse the light exiting from the optical equalizer.
摘要:
A robot system includes a fixed camera that obtains first measurement data by detecting a plurality of features positioned within a detection range, the detection range including at least part of a range in which a robot arm is movable, a hand camera movable with the robot arm, and a control apparatus that controls the robot arm. A calibration function that relates a value obtained as part of the first measurement data to a command value provided to the robot arm at each of a plurality of positions and orientations at which the hand camera obtains second measurement data by detecting each mark.
摘要:
A high throughput parcel unloading system includes a robotic arm arrangement, including a cluster of robotic arms having grouping mechanisms. A conveyor system is also provided onto which parcels are placed by the robotic arm system. An image recognition system determines the position and arrangement of parcels within a container, and a control system is configured to receive image information from the image recognition system and control operation of the robotic arm system and conveyor system.
摘要:
An object is highly precisely moved by an industrial robot to an end position by the following steps, which are repeated until the end position is reached within a specified tolerance: Recording a three-dimensional image by means of a 3-D image recording device. Determining the present position of the object in the spatial coordinate system from the position of the 3-D image recording device the angular orientation of the 3-D image recording device detected by an angle measuring unit, the three-dimensional image, and the knowledge of features on the object. Calculating the position difference between the present position of the object and the end position. Calculating a new target position of the industrial robot while taking into consideration the compensation value from the present position of the industrial robot and a value linked to the position difference. Moving the industrial robot to the new target position.
摘要:
An object is highly precisely moved by an industrial robot to an end position by the following steps, which are repeated until the end position is reached within a specified tolerance: Recording a three-dimensional image by means of a 3-D image recording device. Determining the present position of the object in the spatial coordinate system from the position of the 3-D image recording device the angular orientation of the 3-D image recording device detected by an angle measuring unit, the three-dimensional image, and the knowledge of features on the object. Calculating the position difference between the present position of the object and the end position. Calculating a new target position of the industrial robot while taking into consideration the compensation value from the present position of the industrial robot and a value linked to the position difference. Moving the industrial robot to the new target position.
摘要:
An apparatus is provided with a first sensor unit that obtains two-dimensional information or three-dimensional information about a target object with a first position and orientation, a second sensor unit that obtains the two-dimensional information about the target object, a three-dimensional position and orientation measurement unit that measures three-dimensional position and orientation of the target object based on the information obtained by the first sensor unit, a second sensor position and orientation determination unit that calculates second position and orientation based on a measurement result with the three-dimensional position and orientation measurement unit and model information about the target object, and a three-dimensional position and orientation measurement unit that measures the three-dimensional position and orientation of the target object based on the information obtained by the second sensor unit with the second position and orientation and the model information about the target object.
摘要:
A method, a drone device, and an adaptive robot control system (ARCS) for adaptively controlling a programmable robot are provided. The ARCS receives environmental parameters of a work environment where the drone device operates and geometrical information of a target object to be operated on by the programmable robot. The ARCS dynamically receives a calibrated spatial location of the target object in the work environment based on the environmental parameters and a discernment of the target object from the drone device. The ARCS determines control information including parts geometry of the target object, a task trajectory of a task to be performed on the target object, and a collision-free robotic motion trajectory for the programmable robot, and dynamically transmits the control information to the programmable robot via a communication network to adaptively control the programmable robot while accounting for misalignments of the target object in the work environment.
摘要:
It is an object of the present invention to provide a workpiece holding method which enables a workpiece to be held when a multi-fingered hand is used to grasp the workpiece that is in an untidy heap, even if a target workpiece is subject to interference from another workpiece, and thereby the method enhances the success rate for holding the workpiece. A workpiece holding method, when two holding devices (first to fourth fingers F1 to F4) are used to hold a workpiece (reinforcement W), including a unilateral holding process of inserting a first holding device (the first finger F1 and the second finger F2) at one holding device insert position (region A) to hold and lift a workpiece-to-be-held (reinforcement-to-be-held T) in a state where the workpiece-to-be-held has no interference from any other workpieces at the region A, and a bilateral holding process of inserting a second holding device (the third finger F3 and the fourth finger F4) around (region D) the workpiece-to-be-held lifted by the first holding device, to hold the workpiece-to-be-held.
摘要:
A method, a drone device, and an adaptive robot control system (ARCS) for adaptively controlling a programmable robot are provided. The ARCS receives environmental parameters of a work environment where the drone device operates and geometrical information of a target object to be operated on by the programmable robot. The ARCS dynamically receives a calibrated spatial location of the target object in the work environment based on the environmental parameters and a discernment of the target object from the drone device. The ARCS determines control information including parts geometry of the target object, a task trajectory of a task to be performed on the target object, and a collision-free robotic motion trajectory for the programmable robot, and dynamically transmits the control information to the programmable robot via a communication network to adaptively control the programmable robot while accounting for misalignments of the target object in the work environment.
摘要:
An apparatus is provided with a first sensor unit that obtains two-dimensional information or three-dimensional information about a target object with a first position and orientation, a second sensor unit that obtains the two-dimensional information about the target object, a three-dimensional position and orientation measurement unit that measures three-dimensional position and orientation of the target object based on the information obtained by the first sensor unit, a second sensor position and orientation determination unit that calculates second position and orientation based on a measurement result with the three-dimensional position and orientation measurement unit and model information about the target object, and a three-dimensional position and orientation measurement unit that measures the three-dimensional position and orientation of the target object based on the information obtained by the second sensor unit with the second position and orientation and the model information about the target object.