摘要:
A method of improving a resolution of an image using image reconstruction is provided. The method includes acquiring scan data of an object and forward projecting a current image estimate of the scan data to generate calculated projection data. The method also includes applying a data-fit term and a regularization term to the scan data and the calculated projection data and modifying at least one of the data fit term and the regularization term to accommodate spatio-temporal information to form a reconstructed image from the scan data and the calculated projection data.
摘要:
A method for Computed Tomography (CT) imaging is provided. The method comprises rotating a gantry at a substantially slow rotation speed about a volume of interest. The gantry comprises a combination of X-ray source points. The X-ray source points comprise one or more discrete emission points and an arc of discrete or continuous X-ray source points. The method then comprises obtaining projection data from the combination of X-ray source points and performing a suitable reconstruction based on the projection data obtained from the combination of X-ray source points, to generate one or more reconstructed images.
摘要:
A technique is provided for CT reconstruction for use in CT metrology. The boundary based CT reconstruction method includes the steps of initializing a boundary of an object to obtain a boundary estimate, defining a forward model based on the boundary estimate, linearizing the forward model to obtain a system matrix and implementing an iterative image reconstruction process using the system matrix to update the boundary estimate.
摘要:
A method for imaging an object that includes utilizing a computed tomography imaging apparatus having a distributed x-ray source to acquire samples of projection data of an object in angular and temporal space utilizing a predetermined sampling lattice. Acquired projection data is filtered utilizing a two-dimensional linear filter to produce filtered data, and the filtered data is then backprojected to obtain a reconstructed image of the object.
摘要:
A system and method for CT projection extrapolation are provided. The method comprises receiving a CT projection for extrapolation. The method also comprises selecting a target patch comprising at least one pixel of a row to be extrapolated. The method further comprises generating a correlation profile between the target patch and one or more source patches, wherein the source patches comprise measured pixels in the CT projection in one or more rows adjacent to the target patch. The projection data is generated for at least one pixel of the target patch based on the correlation profile and the measured pixels of at least one of the source patches.
摘要:
Methods are provided for iteratively reconstructing an image signal to generate a reconstructed image signal. In one embodiment, sub-iterations of each iteration are performed on pixel or voxel subsets. The subsets may be composed of neighboring or spatially separated pixel or voxels and may extend in the z-direction. In one embodiment, an update step of the iterative reconstruction involves the direct inversion of an approximation of a Hessian matrix associated with the respective subsets. In further embodiments, non-negativity or other limitations or constraints on update values may be enforced.
摘要:
A method is provided for reconstructing an image of an object that includes image elements. The method includes accessing measurement data associated with the image elements, introducing an auxiliary variable to transform an original problem of reconstructing the image to a constrained optimization problem, and solving the constrained optimization problem using a method of multipliers to create a sequence of sub-problems and solve the sequence of sub-problems. Solving the sequence of sub-problems includes reconstructing the image by optimizing a first objective function. The first objective function is optimized by iteratively solving a nested sequence of approximate optimization problems. An inner loop iteratively optimizes a second objective function approximating the first objective function. An outer loop utilizes the solution of the second objective function to optimize the first objective function.
摘要:
A system and method for CT sinogram extrapolation are provided. The method comprises receiving a CT projection for extrapolation. The method also comprises selecting a target patch comprising at least one pixel of a row to be extrapolated. The method further comprises generating a correlation profile between the target patch and one or more source patches, wherein the source patches comprise measured pixels in the CT projection in one or more rows adjacent to the target patch. The projection data is generated for at least one pixel of the target patch based on the correlation profile and the measured pixels of at least one of the source patches.
摘要:
The subject matter disclosed herein relates to X-ray imaging systems, and more specifically, to multi-energy computed tomography (CT) X-ray imaging systems. In an embodiment, a multi-energy computed tomography (CT) imaging system includes an X-ray source that emits X-rays upon the application of a low stable bias, a high stable bias, and transitional biases between the low stable bias and the high stable bias. The imaging system also includes an X-ray detector configured to produce an electrical signal corresponding to the intensity of the X-rays emitted by the X-ray source that reach the X-ray detector. The imaging system also includes data processing circuitry configured to acquire a first set of data corresponding to the electrical signal produced by the X-ray detector only when the low stable bias or the high stable bias is applied to the X-ray source. The imaging system also includes a processor configured to process the first set of acquired data and construct one or more multi-energy CT images.
摘要:
An imaging system includes an x-ray source, a detector, a data acquisition system (DAS) operably connected to the detector, and a computer operably connected to the DAS. The computer is programmed to obtain CT scan data with two or more incident energy spectra, decompose the obtained CT scan data into projection CT data of a first basis material and a second basis material, generate a first basis material image and a second basis material image using the decomposed projection CT data, generate a first monochromatic image from the first basis material image and the second basis material image at a first energy that is selected based on an amount of correlated noise at the first energy, noise-reduce the first monochromatic image to generate a noise-reduced first monochromatic image, and generate a final monochromatic image based at least on the noise-reduced first monochromatic image.