Abstract:
Highly energy efficient electrodialysis membranes having low operating costs and a novel process for their manufacture are described herein. The membranes are useful in the desalination of water and purification of waste water. They are effective in desalination of seawater due to their low electrical resistance and high permselectivity. These membranes are made by a novel process which results in membranes significantly thinner than prior art commercial electrodialysis membranes. The membranes are produced by polymerizing one or more monofunctional ionogenic monomers with at least one multifunctional monomer in the pores of a porous substrate.
Abstract:
An electrical purification apparatus and methods of making same are disclosed. The electrical purification apparatus may provide for increases in operation efficiencies, for example, with respect to current efficiencies and membrane utilization.
Abstract:
Highly energy efficient electrodialysis membranes having low operating costs and a novel process for their manufacture are described herein. The membranes are useful in the desalination of water and purification of waste water. They are effective in desalination of seawater due to their low electrical resistance and high permselectivity. These membranes are made by a novel process which results in membranes significantly thinner than prior art commercial electrodialysis membranes. The membranes are produced by polymerizing one or more monofunctional ionogenic monomers with at least one multifunctional monomer in the pores of a porous substrate.
Abstract:
Highly energy efficient electrodialysis membranes having low operating costs and a novel process for their manufacture are described herein. The membranes are useful in the desalination of water and purification of waste water. They are effective in desalination of seawater due to their low electrical resistance and high permselectivity. These membranes are made by a novel process which results in membranes significantly thinner than prior art commercial electrodialysis membranes. The membranes are produced by polymerizing one or more monofunctional ionogenic monomers with at least one multifunctional monomer in the pores of a porous substrate.
Abstract:
A nanofiltration membrane comprising a selective layer comprising or consisting of poly(amide-imide) cross-linked with polyallyamine is provided. A method of manufacturing the nanofiltration membrane and use of the nanofiltration membrane in a water softening process that is carried out at a low pressure of less than about 2 bar is also provided.
Abstract:
Systems and methods for the desalination of seawater or brackish water for the purpose of obtaining potable water. Systems may include a combination of electrodialysis and electrodeionization modules. The system configuration and process controls may achieve low energy consumption and stable operation.
Abstract:
Highly energy efficient electrodialysis membranes having low operating costs and a novel process for their manufacture are described herein. The membranes are useful in the desalination of water and purification of waste water. They are effective in desalination of seawater due to their low electrical resistance and high permselectivity. These membranes are made by a novel process which results in membranes significantly thinner than prior art commercial electrodialysis membranes. The membranes are produced by polymerizing one or more monofunctional ionogenic monomers with at least one multifunctional monomer in the pores of a porous substrate.