Abstract:
A LWCO remote monitoring and diagnosing system or device features a signal processor configured to: receive signaling containing information for running a remote low water cut off (LWCO) mobile application, and also containing information about historical data related to a LWCO circuit that monitors and controls a burner of a boiler that opens and closes to provide water to the boiler depending on the water level in the boiler; and determine corresponding signaling containing information about the historical data requested based upon the signaling received.
Abstract:
A discrete valve flow rate converter is provided to obtain a system flow through a valve in a dynamic hydronic pumping system, e.g., based on signaling containing information about the valve's differential pressure and the valve's hydronic characteristics calibration data. The discrete valve flow rate converter resolves the valve system flow rate directly and accurately with the valve's open position and the corresponding valve differential pressure signals associated therewith. The discrete valve flow rate converter may be applied to all kinds of valves as long as their open position and differential pressure associated with is available, e.g., including implementations for control valve applications, e.g., where the valve open position is controlled automatically and accurately, as well as implementations either for pumping system pressure controls with the flow rate known, such as adaptive hydronic system pressure controls, or as an alternative to sensorless pump monitoring and control.
Abstract:
A signal processor receives signaling containing information about flow rates from sensorless converters in zone circulators in heating/cooling zones controlled by temperature sensors in a hydronic heating system in order to derive an adaptive pressure set point to meet the flow rates requested by the heating/cooling zones using an adaptive system and flow control curve equation, the signaling containing information about total flow rates requested by the zone circulators; determines desired pump speeds for the zone circulators to meet temperature requirements in heat zones; provides corresponding signaling containing information about the desired pump speeds; and/or determines the adaptive pump control curve equation based upon an adaptive system curve and as a moving maximum system flow rate depending on an adaptive pressure set point, a system flow rate requested by temperature loads, a minimum pressure at no flow, a control curve setting parameter, and an adaptive moving maximum flow and pressure.
Abstract:
The present invention provides apparatus featuring a signal processor or processing module that may be configured at least to: receive signaling containing information about calibrated motor speed and power data for a hydronic pumping system; and determine system pumping flow rate and pressure associated with an equivalent hydronic system characteristic variable, based at least partly on the signaling received. The signal processor or processing module may be configured to provide corresponding signaling containing information about the system pumping flow rate and pressure determined. The corresponding signaling may contain information used to control the hydronic pumping system.
Abstract:
A fluid sensor (15) is disclosed. The sensor comprises a frame (21), first and second electrodes (271, 272) supported by the frame and separated by space occupiable by a fluid, and a third electrode (273) lying in a path (29) on the frame between the first and second electrodes.
Abstract:
A coupler for aseptically coupling and controlling fluid communication between at least two components. The coupler includes a first connector housing with an inner concave surface. A first connector extends from the top of the first connector housing and is adapted to connect to a first component. A first connector conduit extends through the first connector and into the first connector housing so as to define a fluid passageway to an inner opening on the inner surface of the first connector housing. A rotary valve is located within an inner cavity of the first connector housing and includes at least two rotary valve segments. The rotary valve segments are configured to rotate within the cavity. At least one of the rotary valve segments includes a fluid conduit extending through the at least one rotary valve segment.
Abstract:
An aseptic closure system for attaching to a container including an upper section and a lower section that are removably attached to one another. Each section includes a valve housing with a rotary valve mounted in a bore extending through the valve housing. The upper section has an inlet port and an outlet port, each with a conduit providing fluid communication through the port to an interior of the upper valve housing. The lower section is adapted to mount to a container. The lower valve housing includes two conduits that permit fluid communication through the lower valve housing to an interior of the lower section. The rotation of the rotary valves closes off flow through the conduits in the respective housings.
Abstract:
A spiral heat exchanger features: a cold fluid inlet manifold, a hot fluid inlet manifold and at least one spiral fluid pathway. The cold fluid inlet manifold receives cold fluid and provide cold inlet manifold fluid. The hot fluid inlet manifold receives hot fluid and provide hot inlet manifold fluid. The at least one spiral fluid pathway includes cold spiral pathways configured to receive the cold inlet manifold fluid and provide cold spiral fluid pathway fluid, and hot spiral pathways configured to receive the hot inlet manifold fluid and provide hot spiral fluid pathway fluid. The cold spiral pathways and the hot spiral pathways are configured in relation to one another to exchange heat between the cold spiral pathway fluid and the hot spiral pathway fluid so that the hot spiral fluid pathway fluid warms the cold spiral fluid pathway fluid, and vice versa.
Abstract:
A method for modifying a dimension of a cast iron pump part features placing a cast iron pump part on a base plate of a directed energy deposition (DED) machine; selecting a metal deposition procedure for depositing a metal having a combination of one or more Nickel Alloys or Nickel powders on the cast iron pump part; and depositing the metal on the cast iron pump part to modify the dimension of the cast iron pump part, based upon the metal deposition procedure selected. The selecting of the metal deposition procedure includes forming the metal by mixing metal powders that include a Nickel Alloy “A” in a specified mixed ratio with a pure Nickel powder “B” for depositing on the cast iron pump part.
Abstract:
A method for modifying a dimension of a cast iron pump part features placing a cast iron pump part on a base plate of a directed energy deposition (DED) machine; selecting a metal deposition procedure for depositing a metal having a combination of one or more Nickel Alloys or Nickel powders on the cast iron pump part; and depositing the metal on the cast iron pump part to modify the dimension of the cast iron pump part, based upon the metal deposition procedure selected. The selecting of the metal deposition procedure includes forming the metal by mixing metal powders that include a Nickel Alloy “A” in a specified mixed ratio with a pure Nickel powder “B” for depositing on the cast iron pump part.