Abstract:
There is described a method of post-processing and reporting detected displacement in an optical pointing device as well as a sensing device for an optical pointing device implementing this method. Displacement is detected and a first count representative of a magnitude of the detected displacement is accumulated in an associated accumulation unit, this first count representing the magnitude of the detected displacement at a first resolution (or detection resolution). The first count accumulated in the accumulation unit is processed to convert this first count into a report count representing the magnitude of the detected displacement at a second resolution (or reporting resolution) lower than the first resolution. This report count is then reported, for instance to a PC or an external controller. These operations are repeated to generate periodic motion reports at the second resolution.
Abstract:
There is described a method for detecting a lift condition from an illuminated surface portion of an optical motion sensing device. According to a first embodiment, two different “loss-of-focus” thresholds are used. A first threshold is used when the optical pointing device is not moving, and a second threshold greater than the first one is used when the optical pointing device is moving. The optical device further requires means for detecting whether it is moving or not. According to a second embodiment, a dynamical loss-of-focus threshold depending on an average number of motion features that the surface exhibits to the sensor of the optical pointing device is used.
Abstract:
There is described a method of post-processing and reporting detected displacement in an optical pointing device as well as a sensing device for an optical pointing device implementing this method. Displacement is detected and a first count representative of a magnitude of the detected displacement is accumulated in an associated accumulation unit, this first count representing the magnitude of the detected displacement at a first resolution (or detection resolution). The first count accumulated in the accumulation unit is processed to convert this first count into a report count representing the magnitude of the detected displacement at a second resolution (or reporting resolution) lower than the first resolution. This report count is then reported, for instance to a PC or an external controller. These operations are repeated to generate periodic motion reports at the second resolution.
Abstract:
A method for measuring relative motion between an illuminated portion of a surface and an optical sensing device comprising a coherent light source and a photodetector device comprising an array of pixels and comparators for extracting motion features. The method includes the steps (a)-(d). Step (a) includes illuminating with the coherent light source the surface portion at a determined flash rate. Step (b) includes detecting, using the array of pixels a speckled light intensity pattern of the illuminated portion of the surface for each flash. Step (c) includes extracting edge direction data of two different types from the detected speckled light intensity patterns. Step (d) includes measuring relative motion between the optical sensing device and the illuminated portion of the surface based on extracted edge direction data. The step of extracting edge direction data further includes a preliminary step of introducing a selecting factor, which promotes detection of one type of edge direction data rather than another type.
Abstract:
The invention concerns an optical pointing device comprising a coherent light source for illuminating a surface portion with radiation, a driver of the coherent light source for controlling coherent light emissions, a photodetector device responsive to radiation reflected from the illuminated surface portion, processing means for determining, based on the photodetector device response, a measurement of relative motion between the optical pointing device and the illuminated portion of the surface, wherein the coherent light source driver is a fault-tolerant driver comprising redundant power control means for limiting the output power of coherent light emissions.
Abstract:
A method for detecting lift from a surface portion of an optical pointing device comprising a coherent light source, a photodetector device including an array of pixels, and extracting motion features including comparators with an adjustable offset value, the method comprising the steps of: (i) illuminating the surface portion with radiation by the coherent light source; (ii) detecting radiation patterns reflected from the illuminated surface portion with the photodetector device; (iii) comparing light intensity between neighbouring pixels in the detected radiation patterns; (iv) extracting motion features as a function of the result of the comparison; (v) counting the total number of motion features extracted; (vi) increasing or decreasing the comparator offset value when the total number of motion features increases or decreases; (vii) comparing the comparator offset value with an offset threshold; (viii) enabling detection of a lift condition if the comparator offset value is lower than the offset threshold.
Abstract:
A method for detecting lift from a surface portion of an optical pointing device comprising a coherent light source, a photodetector device including an array of pixels, and means for extracting motion features including comparators with an adjustable offset value, the method comprising the steps of: (i) illuminating said surface portion with radiation by means of said coherent light source; (ii) detecting radiation patterns reflected from the illuminated surface portion by means of said photodetector device; (iii) comparing light intensity between neighbouring pixels in said detected radiation patterns; (iv) extracting motion features as a function of the result of said comparison; (v) counting the total number of motion features extracted; (vi) increasing, respectively decreasing, said comparator offset value when said total number of motion features increases, respectively decreases; wherein the method further comprises the steps of: (vii) comparing said comparator offset value with an offset threshold; (viii) enabling detection of a lift condition if said comparator offset value is lower than said offset threshold.
Abstract:
There is described a method for measuring relative motion between an illuminated portion of a surface and an optical sensing device comprising a photodetector array including a plurality of rows and columns of pixels respectively aligned along first and second axes comprising essentially the steps of comparing at a first point in time light intensity between neighbouring pixels of the photodetector array and determining along each of the first and second axes, edge direction data from the detected first light intensity pattern, extracting edge inflection data from the edge direction data from the detected first light intensity pattern, comparing at a second point in time light intensity between neighbouring pixels and determining along each of said first and second axes, the edge direction data from the detected second light intensity pattern, extracting edge inflection data from the edge direction data from the detected second light intensity pattern. The method further comprises the steps of extracting inflection line data being descriptive of the succession of two adjacent edge inflection data of the same type transversal to at least one determined axis, counting a total number of the extracted line conditions and determining a measurement of the relative motion between the optical sensing device and the illuminated portion of the surface along the determined axis based on a ratio of a comparison of the edge inflection data previously extracted and a function of the total number of inflection conditions and the total number of line conditions.
Abstract:
There is described a method for measuring relative motion between an illuminated portion of a surface and an optical sensing device comprising a photodetector array including a plurality of rows and columns of pixels respectively aligned along first and second axes comprising essentially the steps of comparing at a first point in time light intensity between neighbouring pixels of the photodetector array and determining along each of the first and second axes, edge direction data from the detected first light intensity pattern, extracting edge inflection data from the edge direction data from the detected first light intensity pattern, comparing at a second point in time light intensity between neighbouring pixels and determining along each of said first and second axes, the edge direction data from the detected second light intensity pattern, extracting edge inflection data from the edge direction data from the detected second light intensity pattern. The method further comprises the steps of extracting inflection line data being descriptive of the succession of two adjacent edge inflection data of the same type transversal to at least one determined axis, counting a total number of the extracted line conditions and determining a measurement of the relative motion between the optical sensing device and the illuminated portion of the surface along the determined axis based on a ratio of a comparison of the edge inflection data previously extracted and a function of the total number of inflection conditions and the total number of line conditions.
Abstract:
There is described a method as well as a device for motion detect ion in an optical sensing device, such as an optical mouse. A photodetector array comprising a plurality of pixels is used to detect successive light intensity patterns of an illuminated portion of a surface with respect to which a measurement of relative motion is to be determined. Light intensity between neighbouring pixels is compared in order to determine edge direction data descriptive of light intensity differences between the pixels, such data including (i) a first edge condition, or positive edge, defined as a condition wherein light intensity of a first pixel is less than light intensity of a second pixel, and (ii) a second edge condition, or negative edge, defined as a condition wherein light intensity of the first pixel is greater than light intensity of the second pixel. Through comparison of this edge direction data with edge direction data determined from a previous illumination (or by comparing data extracted from this edge direction data) a measurement of the relative motion of the optical sensing device with respect to the illuminated portion of the surface is determined.