Abstract:
A method for reducing noise in images includes utilizing an original image to generate a segmentation mask and a filtered image, and utilizing the filtered image, the original image, the segmentation mask and separate blending parameters for structural and nonstructural portions of the filtered image to generate a blended image. The method further includes contrast matching the blended image with the original image to produce an output image.
Abstract:
One or more techniques are provided for measuring the motion of an organ in three dimensions. As provided by the technique, the motion of the organ along each dimension may be determined by a suitable methodology. Where sensor-based motion measurements are suitable, one or more sensors may be placed on a patient to measure internal motion of the organ of interest along one or more perpendicular axes. Where image-based techniques are suitable, the motion of the internal organ along a perpendicular axis may determined using pre-acquisition image data or acquisition image data when suitable. Concurrent motion vectors for all three dimensions may be obtained from the motion data acquired for the perpendicular axes by the disparate methodologies. The concurrent motion vectors may be combined to describe the three-dimensional motion of the organ over time. Validation of the motion data may be performed for each of the one-dimensional motion data sets using motion data acquired by image-based methods, or other image-based methods, for a respective axis.
Abstract:
Certain embodiments of the present invention provide a system and method for automatically synchronizing multiple images. Multiple image sets of a single object are converted into a one dimensional data stream used to synchronize multiple image sets. A common reference point is located in the image sets. Various landmarks of the object are also located in the image sets. Corresponding landmarks among the image sets are noted. Distances from landmarks to the reference point and distances between landmarks are determined. Locations of the landmarks in relation to each other and in relation to the reference point are used to locate landmarks in another image set that correspond to landmarks in a selected image set. A first location in an image set may be identified using a first indicator. A second indicator corresponding to the location of the first indicator may then be determined in another image set.
Abstract:
A method for extracting a three-dimensional (3D) volume of interest from a three-dimensional (3D) image dataset includes accessing a 3D image dataset that includes a plurality of image slices, enclosing a 3D volume of interest in the 3D image dataset using a 3D mesh, automatically extracting the 3D volume of interest based on the 3D mesh, and generating a 3D image of the extracted 3D volume of interest. A computer and a non-transitory computer readable medium are also described herein.
Abstract:
Methods and apparatus for determining brain cortical thickness. One method includes determining an intensity profile at each of a plurality of cortical surface points of an imaged brain using brain tissue image data and calculating a cortical thickness based on a parametrically determined transition point of each intensity profile.
Abstract:
Systems, methods and apparatus are provided through which in one aspect, a three-dimensional (3D) image of an object is constructed from a plurality of two-dimensional (2D) images of the object using a specialized filter. In some embodiments, the specialized filter implements a linear ramp function, a windowing function, and/or a polynomial function. In some embodiments, the 3D image is back-projected from the filtered two-dimensional images, yielding a 3D image that has improved visual distinction of overlapping anatomic structures and reduced blurring.
Abstract:
A method, system, and storage medium for computer aided processing of an image set includes employing a data source, the data source including an image set acquired from X-ray projection imaging, x-ray computed tomography, or x-ray tomosynthesis, defining a region of interest within one or more images from the image set, extracting feature measures from the region of interest, and reporting at least one of the feature measures on the region of interest. The method may be employed for identifying bone fractures, disease, obstruction, or any other medical condition.
Abstract:
Systems, methods and apparatus are provided through which in some embodiments, and database of images have categorized levels of severity of a disease or medical condition is generated from human designation of the severity. In some embodiments, the severity of a disease or medical condition is diagnosed by comparison of a patient image to images in the database. In some embodiments, changes in the severity of a disease or medical condition of a patient are measured by comparing a patient image to images in the database.
Abstract:
A technique for scheduling health care resources accesses performance data for any relevant resources required or desired for carrying out a procedure. The resources may include equipment, facilities, personnel, service providers, and so forth. The performance data may include indications of durations required for each of the resources for the particular type of procedure to be scheduled, as well as lead times for ordering resources, transit of the resources, and so forth. The information may further include preferences, such as patient and physician preferences that may affect the times required for the resources. Further information may include training or skill level of personnel, and so forth. Based on the information, one or more schedules for the required resources are updated, established, modified, or otherwise altered.
Abstract:
A patient identification card system and method for efficient medical care. The present invention provides an improved patient identification card system for efficient medical care including a patient card, a patient card access device, and a medical report. The present invention also provides an improved patient identification card system for efficient medical care including a patient card, a physiologic sensor network, a patient card access device, and a data processor. The present invention also includes a method for obtaining patient information using a patient card including inputting a request to a data processor, processing the request with the data processor, and outputting the processed information to a medical report.