Abstract:
When first image data, which is in a first color space, is converted into second image data, which is in a second color space corresponding to an image output unit. Upon converting the image data, if the first image data is color data, background removal process is switched OFF. Otherwise, the background removal process is switched ON. Thus, it is possible to obtain an image desired by a user.
Abstract:
The image processing device comprises a first function block section formed of functional blocks which require a supply of power so as to maintain the image processing device in an operating state when the power supply is on, and a second function block section formed of functional blocks which need not be supplied with the power so as to maintain the image processing device in an operating state even when the power supply is on. The supply of power to the second function block section can be stopped when desired, while continuing the supply of power to the first function block section, thereby saving the power.
Abstract:
The image processing apparatus comprises an image data control section and a system controller. The image data control section is connected to any one or more of a sensor board unit, an image-memory access control section, an image processor, a video data control section, and a facsimile control unit. The system controller switches, when the image data to be transmitted to the image data control section conflicts with one another, a transmission mode of the image data in conflict with one another. Further, the image-memory access control section and the image processor share jobs of performing image processing on the image data.
Abstract:
An image processor has a controller unit connected to at least one of functional units such as an image reading unit, detects a source of input of image data according to a network I/F or a parallel bus I/F. An image-memory access control section transmits the image data input from each of the functional units to a memory group and also transmits the image data stored in the memory group to the functional unit. A system controller controls the overall apparatus and also controls the image-memory access control section according to the input source of the image data to determine an order of transmitting the image data to the memory group.
Abstract:
The image processor comprises a switch that divides image data into m×n pixels, having n lines with m pixels per one line; a group of line memories that store the divided image; a compression device which batch compresses the image data of m×n pixels. Further, a command control unit provides control so as to send the (n−1) lines of image data among m×n pixels of image data to the group of line memories, and the remaining one line of image data directly to the compression device 902, and to send the m×(n−1) pixels of image data stored in the line memories to the compression device.
Abstract:
An image processing apparatus is provided with a detector for detecting a dot image portion or a non-dot image portion from a binarized image data representing an image, and an image processing section for carrying out a different image processing with respect to the binarized image data depending on a detection result of the detector.
Abstract:
The image processing device comprises a first function block section formed of functional blocks which require a supply of power so as to maintain the image processing device in an operating state when the power supply is on, and a second function block section formed of functional blocks which need not be supplied with the power so as to maintain the image processing device in an operating state even when the power supply is on. The supply of power to the second function block section can be stopped when desired, while continuing the supply of power to the first function block section, thereby saving the power.
Abstract:
An image processing apparatus able to instantaneously transmit image data on which a color/monochrome judgment and a series of processings have been performed comprising: a color/monochrome judging device for judging if input RGB image data is color or monochrome; a color image correction processing unit for performing color image correction processing on the RGB image data and outputting color image data; a monochrome image conversion processing unit for performing monochrome image conversion processing on the RGB image data and converting the same to monochrome image data; image accumulation device for accumulating color image data and monochrome image data; a network I/F for transmitting the image data accumulated in the image accumulation device to an external network; and accumulation control device for outputting either the color image data or monochrome image data accumulated in the image accumulation device to an external network in accordance with the color/monochrome judgment result.
Abstract:
An image processing apparatus includes a spatial filtering unit which applies spatial filtering to input image data to generate filtered image data such that the spatial filtering provides a broader dynamic range for outputs than for inputs, and a high-resolution conversion unit which interpolates the filtered image data in a first direction by an average of values of two pixels adjacent in the first direction, in a second direction perpendicular to the first direction by an average of values of two pixels adjacent in the second direction, and in a direction diagonal to the first and second directions by an average of four pixels surrounding a pixel of interest, thereby converting the filtered image data into high-resolution image data.
Abstract:
When first image data, which is in a first color space, is converted into second image data, which is in a second color space corresponding to an image output unit. Upon converting the image data, if the first image data is color data, background removal process is switched OFF. Otherwise, the background removal process is switched ON. Thus, it is possible to obtain an image desired by a user.