Abstract:
A procedure to determine VSP-WD (Vertical Seismic Profiling—While Drilling) first breaks in absolute time is described. By combining a seismic surface source and firing complex seismic pattern unique in time (with a highly accurate surface—downhole time reference system), an automatic downhole procedure for first break detection on the downhole data, even under harsh conditions (low signal to noise ratio), is established. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
Abstract:
A procedure to determine VSP-WD (Vertical Seismic Profiling—While Drilling) first breaks in absolute time is described. By combining a seismic surface source and firing complex seismic pattern unique in time (with a highly accurate surface—downhole time reference system), an automatic downhole procedure for first break detection on the downhole data, even under harsh conditions (low signal to noise ratio), is established. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
Abstract:
A downhole device, position verifiable string includes a downhole device; a string in operable communication with downhole device; and a plurality of sensor units each sensing at least one of acceleration and strain in the string and spaced from each other along the string from downhole device to a remote location of the drill string and method.
Abstract:
A method and system for acquiring seismic data while conducting drill string operations in a wellbore. The seismic receiver combination set comprises a combination of orthogonal geophones and accelerometers, and an array of hydrophones.
Abstract:
An indicator including a body configured to be run within a tubular from a first portion to a second portion of the tubular. A sensor disposed at the body configured to detect when a tool run through the tubular has reached the body. A signal generator configured to send notification that the tool has reached the body; and a plunger configured to cause the signal generator to send notification upon being urged relative to the body. A method of verifying a tool.
Abstract:
A method for adjusting a parameter of a wellbore operation includes: conveying a carrier through the wellbore; performing a resistivity measurement on the formation using a resistivity tool disposed on the carrier; performing an acoustic measurement on the formation using an acoustic tool disposed on the carrier; generating with a at least one processor a map of the formation using the resistivity measurement and the acoustic measurement, and adjusting the parameter using the map.
Abstract:
An indicator including a body configured to be run within a tubular from a first portion to a second portion of the tubular. A sensor disposed at the body configured to detect when a tool run through the tubular has reached the body. A signal generator configured to send notification that the tool has reached the body; and a plunger configured to cause the signal generator to send notification upon being urged relative to the body. A method of verifying a tool.
Abstract:
A controllable seismic source is used in a seismic-while-drilling system for obtaining VSP data. Coded information is sent downhole about the signal generated by said controllable source. The information about the seismic source is used for reconstructing the source waveform and processing the VSP data. Optionally, a reference signal measured at one depth of the BHA is used for processing of signals at subsequent depths.
Abstract:
A drilling system includes a control unit and a bottomhole assembly (BHA) coupled to a drill string. The control unit uses measurements from sensors distributed throughout the drill string and BHA to determine the physical condition of the drill string and BHA and to determine whether drilling can be optimized. The drill string sensors are housed in receiver subs and optionally can be positioned on extensible members. The receiver sub also can include a short-hop telemetry module, a processor module, and a clock module. In one embodiment, the receiver subs include seismic sensors for enabling vertical seismic profiling. During operation, the processor visually presents to the operator via one or more graphical user interfaces a dynamically updated pictorial image representing the drilling system. The image is annotated with an appropriate visual signal to indicate a determined physical condition at a given location or component. The processor can also display recommended adjustments to drilling parameters for increasing drilling rates, improving tool life, and more precise steering.
Abstract:
A method and system is provided for acquiring seismic data while conducting drill string operations in a wellbore. A seismic receiver is conveyed in a drill string to a location of interest; coded seismic signals are generated by a seismic source near a surface location; the coded seismic signals are detected with at least one sensor in the seismic receiver at least one location of interest in the wellbore as the drill string is operated in the wellbore; an arrival time of the detected seismic signal is computed in the seismic receiver; and the detected seismic signals or computed arrival times are stored in the seismic receiver or transferred to the surface.