Abstract:
A flash memory device includes a flash memory cell array having flash memory cells arranged with word and bit lines, a word line driver circuit configured to drive the word lines at a selected step increment during a programming operation, a bulk-voltage supply circuit configured to supply a bulk voltage into a bulk of the flash memory cell array and a writing circuit configured to drive the bit lines selected by conditions during a programming operation. A control logic block is configured to control the writing circuit and the bulk-voltage supply circuit during the programming operation. The control logic block is configured to cause the writing circuit and/or the bulk-voltage supply circuit to change at least one of the conditions of the writing circuit and/or the bulk voltage responsive to the selected step increment.
Abstract:
A flash memory device includes a program data buffer configured to buffer program data to be programmed in a memory cell array, and a verify data buffer configured to compare verify data to confirm whether the program data is accurately programmed in the memory cell array, wherein at least a portion of the verify data buffer is selectively enabled as a verify data buffer or a program data buffer responsive to a buffer control signal.
Abstract:
Nonvolatile memory devices support programming and verify operations that improve threshold-voltage distribution within programmed memory cells. This improvement is achieved by reducing a magnitude of the programming voltage steps and increasing a duration of the verify operations once at least one of the plurality of memory cells undergoing programming has been verified as a “passed” memory cell. The nonvolatile memory device includes an array of nonvolatile memory cells and a control circuit, which is electrically coupled to the array of nonvolatile memory cells. The control circuit is configured to perform a plurality of memory programming operations (P) by driving a selected word line in the array with a first stair step sequence of program voltages having first step height (e.g., ΔV1) and then, in response to verifying that at least one of the memory cells coupled to the selected word line is a passed memory cell, driving the selected word line with a second stair step sequence of program voltages having a second step height (e.g., ΔV2) lower than the first step height.
Abstract:
A column predecoder includes a buffer unit for inputting all column selection signals, decoder units for decoding an output of the buffer unit and column addresses, and level shifters for shifting voltage levels of column selection signals coupled to gates of the column selection transistors in response to an output of the decoder units. Since a ground voltage is applied to a bitline and a high voltage is applied to all column selection signals during the stress test, the stress test time can be shortened.
Abstract:
Memory cells in a memory cell array are erased using an erase operation followed by a post-program operation. In the erase operation, an erase voltage is applied to a plurality of memory cells of the memory cell array. In the post program operation, a program voltage is simultaneously applied to at least two word lines coupled to ones of the plurality of erased memory cells of the memory cell array. Related devices are also discussed.
Abstract:
Disclosed are a non-volatile memory device and a method of programming the same. The method comprises applying a wordline voltage, a bitline voltage, and a bulk voltage to a memory cell during a plurality of program loops. In cases where the bitline voltage falls below a first predetermined detection voltage during a current program loop, or the bulk voltage becomes higher than a second predetermined detection voltage, the same wordline voltage is used in the current programming loop and a next program loop following the current program loop. Otherwise, the wordline voltage is incremented by a predetermined amount before the next programming loop.
Abstract:
Data verification methods and/or nonvolatile memory devices are provided that concurrently detect data for a selected memory cell of the nonvolatile memory device and verify a programmed or erase state of previously detected data of a different memory cell of the nonvolatile memory device. Concurrently detecting data and verifying a programmed or erase state may be provided by a sense amplifier configured to sense data from a memory cell of the nonvolatile memory device, a latch configured to store the data sensed by the sense amplifier, an I/O buffer configured to store the data stored in the latch and a program/erase verifier circuit configured to control the sense amplifier, latch and I/O buffer to provided previously sensed data for a first memory cell to the program erase/verifier circuit for verification while the sense amplifier is sensing data for a second memory cell.
Abstract:
Disclosed is a non-volatile semiconductor memory device including a circuit for controlling potentials of select lines and word lines in accordance with bit line setup, string select line setup, program and discharge periods of a program cycle. The control circuit biases a string select line to a power supply voltage during the bit line setup period in the program cycle, and to a voltage between the power supply voltage and ground voltage during the string select line setup and the program periods. According to the string select line control scheme, program disturb due to a noise voltage induced at a string select line when a program voltage is applied to a word line adjacent to the string select line is prevented.
Abstract:
A method of programming a non-volatile semiconductor memory device is provided. The method includes a bitline setup step, a well bias setup step, a program step, and a discharge step. In the bitline setup step, either a ground or power supply voltage is supplied respectively to bitlines according to data bits stored in page buffers, and a pocket P-well area is biased with the ground voltage. In the well bias setup step, the ground voltage applied to the pocket P-well area is cut off to make the second well area attain a floating state. Under such a condition, the pocket P-well area is biased with a coupling voltage, which is lower than the ground voltage, through a coupling capacitance between the pocket P-well area and a common source line, or a coupling capacitance between the pocket P-well area and an N-well area. In the program step, a program voltage is supplied to selected wordlines and a pass voltage is supplied to unselected wordlines, with the floating second well area biased with the coupling voltage. Therefore, the pocket P-well area is biased with a negative voltage through the capacitance coupling.
Abstract:
Disclosed is a nonvolatile semiconductor memory device which comprises a controller for controlling block select signal generators. The controller simultaneously activates the block select signal generators in a bit line setup and a recovery period, so that the word lines in each of memory blocks are set to a predetermined voltage (for example, a ground voltage, a power supply voltage, or an intermediate voltage), respectively. According to the control scheme, by attenuating a bouncing of a substrate voltage caused in an instant by means of a capacitive coupling between a bit line and a substrate at a transition of a bit line voltage, there are prevented an under program and a program disturb during a program cycle.