Abstract:
Systems and methods are described for acquiring and decoding a plurality of images. First images are acquired and then processed to attempt to decode a symbol. Contributions of the first images to the decoding attempt are identified. An updated acquisition-settings order is determined based at least partly upon the contributions of the first images to the decoding attempt. Second images are acquired or processed based at least partly upon the updated acquisition-settings order.
Abstract:
Methods and systems for auto-tuning a handheld scanning device that can account for changes in the orientation between the handheld scanning device and a presented symbol can include capturing a first image containing a presented symbol, recording an orientation parameter and parameters associated with capturing the first image containing the presented symbol, capturing a subsequent image containing the presented symbol, recording an orientation parameter of the presented symbol contained in the subsequent image, comparing the orientation parameter of the symbol contained in the subsequent images to the orientation parameter of the presented symbol contained in the subsequent image, determining if the orientation parameter of the presented symbol contained in the subsequent images is substantially similar to the orientation parameter of the symbol contained in the first image, and recording parameters associated with capturing the subsequent images containing the presented symbol.
Abstract:
Systems and methods for use with a handheld mark reader that reduce the time between activation of the reader's trigger and the reader returning a successful decode response. Image processing may be performed prior to the user actuating the trigger and thus obtaining a decodable image with reduced delay. Separate pre-trigger and post-trigger parameters may be used for image decoding. A feedback loop may be incorporated for repeated parameter updates. An adjustable lens may be utilized either with illumination OFF or ON.
Abstract:
A standoff for an optical imaging system includes a base, with a target plate coupled to the base and positioned along a central trajectory of the base. The target plate includes a scan window positioned along the central trajectory of the base. The scan window serves to align the optical imaging system with an optical mark on an object. A machine readable code can be positioned on the target plate, the machine readable code including optical imaging system setting information to be read by the optical imaging system.
Abstract:
This invention provides a vision system camera, and associated methods of operation, having a multi-core processor, high-speed, high-resolution imager, FOVE, auto-focus lens and imager-connected pre-processor to pre-process image data provides the acquisition and processing speed, as well as the image resolution that are highly desirable in a wide range of applications. This arrangement effectively scans objects that require a wide field of view, vary in size and move relatively quickly with respect to the system field of view. This vision system provides a physical package with a wide variety of physical interconnections to support various options and control functions. The package effectively dissipates internally generated heat by arranging components to optimize heat transfer to the ambient environment and includes dissipating structure (e.g. fins) to facilitate such transfer. The system also enables a wide range of multi-core processes to optimize and load-balance both image processing and system operation (i.e. auto-regulation tasks).
Abstract:
A device includes an adapter having a number of holes and a number of threaded studs. The holes are arranged in a spaced apart pattern corresponding to a bolt pattern of a legacy cockpit display unit. The threaded studs are arranged in a spaced apart pattern similar to a bolt pattern of a display unit.
Abstract:
A handheld scanner incorporates vision software to allow the handheld scanner to be trained for OCR. The handheld scanner can include a user interface to allow a user to associate an image of a mark with electronic data for the mark. The user interface, along with a range finder, can also be used to influence variables that affect the quality of an image scan, thereby improving the quality of results for the image scan and/or decode process. The handheld scanner can also use a font description file during the decode process. The font description file can be generated using a synthetic image file of a character. The synthetic image file can be created by interpreting a marker font file.
Abstract:
An integrated audiovisual threat warning system configured to detect a threat, estimate a relative location of origin of the threat with respect to a host platform with which the system is associated, and to warn an occupant of the host platform of the threat. The system includes an audio processor configured to receive a warning tone, geo-spatial coordinate data from the host platform, and the estimated relative location of origin of the threat, and to process the warning tone based on the geo-spatial coordinate data and the direction information to generate a directional audio warning signal. The system also includes a plurality of speakers configured to audibly project the directional audio warning signal to audibly identify the estimated relative location of origin of the threat, and a display control unit configured to display the estimated relative location of origin of the threat overlaid on a map.
Abstract:
A handheld scanner incorporates vision software to allow the handheld scanner to be trained for OCR. The handheld scanner can include a user interface to allow a user to associate an image of a mark with electronic data for the mark. The user interface, along with a range finder, can also be used to influence variables that affect the quality of an image scan, thereby improving the quality of results for the image scan and/or decode process.
Abstract:
Systems and methods for use with a handheld mark reader that reduce the time between activation of the reader's trigger and the reader returning a successful decode response. Image processing may be performed prior to the user actuating the trigger and thus obtaining a decodable image with reduced delay. Separate pre-trigger and post-trigger parameters may be used for image decoding. A feedback loop may be incorporated for repeated parameter updates. An adjustable lens may be utilized either with illumination OFF or ON.