Abstract:
An array substrate for an in-plane switching liquid crystal display device includes a substrate, a gate line and a data line on the substrate, wherein the gate line and the data line cross each other to define a pixel region. A thin film transistor is electrically connected to the gate line and the data line. A common line is parallel to the gate line. A plurality of common electrodes perpendicularly extend from the common line. A plurality of pixel electrodes alternate with the plurality of common electrodes. An overcoat layer is formed over the plurality of common electrodes and the plurality of pixel electrodes, the overcoat layer having a plurality of holes.
Abstract:
An in-plane switching mode LCD device is disclosed, in which high response time is obtained and residual images are prevented from occurring. The in-plane switching mode LCD device includes first and second substrates, common electrodes arranged on one of the two substrates in a substantially zigzag pattern, a pixel electrode arranged with a substantially zigzag pattern corresponding to the common electrodes roughly in parallel with the common electrodes, common electrode frames projected from a bent portion of the common electrodes, pixel electrode frames projected from a bent portion of the pixel electrodes, and a liquid crystal between the first and second substrates.
Abstract:
The present invention relates to a multidomain liquid crystal display device that is capable of appropriately adjusting the angle of the boundary line of a slit formed on one substrate and the pitch of liquid crystal to thereby obtain multidomain for a main viewing angle on each of domains, thereby allowing a simplified manufacturing process and improving the viewing angle and transmissivity. The multidomain liquid crystal display device includes first and second substrates, the first substrate having a plurality of pixel areas, a transparent conductive layer on each pixel area of the first substrate and having at least one or more slits inclined at a prescribed angle with respect to a boundary of the pixel area, and a liquid crystal layer between the first and second substrates.
Abstract:
Disclosed is a color liquid crystal display device including an upper plate section having color filters, a lower plate section having a patterned electrode structure for each of red, green, and blue pixels, and a liquid crystal interposed between the upper and lower plate sections, wherein the pixels have different electrode widths and different slit widths for different colors, respectively. Respective pixel electrode widths (ER, EG, and EB) associated with the red, green, and blue colors have a relation of “ER≦EG≦EB”, and respective slit widths (SR, SG, and SB) associated with the red, green, and blue colors have a relation of “SB≦SG≦SR”.
Abstract:
The present invention discloses an array substrate for an IPS-LCD device. The IPS-LCD device according to the present invention implements a multi-domain for a liquid crystal layer. The liquid crystal molecules are aligned in various directions with respect to each different domain. Therefore, the different domains compensate for one another such that a color shift is prevented in spite of wide viewing angles. To form the multi-domain, the present invention provides an array substrate having divided common electrode or pixel electrode or both. In another aspect, to form the multi-domain, the present invention provides an array substrate having multi-bar shaped common and pixel electrodes. Each of the common and pixel electrodes has a transverse portion and a perpendicular portion. The transverse portions of the common and pixel electrodes induce a first domain, whereas the perpendicular potions of the common and pixel electrodes induce a second domain.
Abstract:
The present invention discloses an IPS-LCD device. The IPS-LCD device according to the present invention implements a multi-domain for a liquid crystal layer. The liquid crystal molecules are aligned in various directions with respect to each different domain. Therefore, the different domains compensate for one another such that a color shift is prevented in spite of wide viewing angles. To form the multi-domain, the present invention provides a plurality of dielectric protrusions.
Abstract:
A backlight unit for a display device and a liquid crystal display device using the backlight unit suppresses light leakage to a neighboring region with a display area that is divided and driven by a DDAM (Divided Display Area Method). The backlight unit in one aspect includes a main light guide plate defined by an n number of regions for a field sequential driving, auxiliary light guide plates arranged below edges of the main light guide plate, first and second reflection plates arranged below the main light guide plate and the auxiliary light guide plate, a plurality of light source parts arranged at a predetermined interval at both sides of the auxiliary light guide plate, and a housing configured to enclose a side of the main light guide plate, the auxiliary light guide plate and side and lower portion of the light source parts.
Abstract:
A method for fabricating an array substrate for an in-plane switching liquid crystal display device includes forming a gate line and a data line on the substrate, the gate line and the data line crossing each other to define a pixel region, forming a thin film transistor that is electrically connected to the gate and data lines, and forming a common line parallel to the gate line. A plurality of common electrodes are formed to perpendicularly extend from the common line. A plurality of pixel electrodes are formed in an alternating pattern with the plurality of common electrodes, and an overcoat layer is formed over the plurality of common electrodes and the plurality of pixel electrodes, the overcoat layer having a plurality of holes.
Abstract:
A multi-domain liquid crystal display device comprises first, and second substrates facing each other and a liquid crystal layer between the first and second substrates. A plurality of gate bus lines are arranged in a first direction on the first substrate and a plurality of data bus lines are arranged in a second direction on the first substrate to define a pixel region. A pixel electrode electrically is charged through the data bus line in the pixel region, a color filter layer is formed on the second substrate, and a common electrode is formed on the color filter layer. Dielectric frames are formed in the pixel region, and an alignment layer on at least one substrate between the first and second substrates.
Abstract:
The present invention discloses an IPS-LCD device. The IPS-LCD device according to the present invention implements a multi-domain for a liquid crystal layer. The liquid crystal molecules are aligned in various directions with respect to each different domain. Therefore, the different domains compensate for one another such that a color shift is prevented in spite of wide viewing angles. To form the multi-domain, the present invention provides a plurality of dielectric protrusions.