Abstract:
An overlapping trench gate semiconductor device includes a semiconductor substrate, a plurality of shallow trenches disposed on the semiconductor substrate, a first conductive layer disposed in the shallow trenches, a plurality of deep trenches respectively disposed in each shallow trench, a second conductive layer disposed in the deep trenches, a source metal layer and a gate metal layer. Each of the deep trenches extends into the semiconductor substrate under each shallow trench. The source metal layer is electrically connected to the second conductive layer, and the gate metal layer is electrically connected to the first conductive layer.
Abstract:
A manufacturing method of a depletion mode trench semiconductor device includes following steps. Firstly, a substrate including a drift epitaxial layer disposed thereon is provided. A trench is disposed in the drift epitaxial layer. A gate dielectric layer is formed on an inner sidewall of the trench and an upper surface of the drift epitaxial layer. A base doped region is formed in the drift epitaxial layer and adjacent to a side of the trench. A thin doped region is formed and conformally contacts the gate dielectric layer. A gate material layer is formed to fill the trench. A source doped region is formed in the base doped region, and the source doped region overlaps the thin doped region at a side of the trench. Finally, a contact doped region is formed to overlap the thin doped region, and the contact doped region is adjacent to the source doped region.
Abstract:
A laterally diffused metal-oxide-semiconductor device includes a substrate, a gate dielectric layer, a gate polysilicon layer, a source region, a drain region, a body region, a first drain contact plug, a source polysilicon layer, an insulating layer, and a source metal layer. The source polysilicon layer disposed on the gate dielectric layer above the drain region can serve as a field plate to enhance the breakdown voltage and to increase the drain-to-source capacitance. In addition, the first drain contact plug of the present invention can reduce the drain-to-source on-resistance and the horizontal extension length.
Abstract:
A manufacturing method of a depletion mode trench semiconductor device includes following steps. Firstly, a substrate including a drift epitaxial layer disposed thereon is provided. A trench is disposed in the drift epitaxial layer. A gate dielectric layer is formed on an inner sidewall of the trench and an upper surface of the drift epitaxial layer. A base doped region is formed in the drift epitaxial layer and adjacent to a side of the trench. A thin doped region is formed and conformally contacts the gate dielectric layer. A gate material layer is formed to fill the trench. A source doped region is formed in the base doped region, and the source doped region overlaps the thin doped region at a side of the trench. Finally, a contact doped region is formed to overlap the thin doped region, and the contact doped region is adjacent to the source doped region.
Abstract:
A bilateral conduction semiconductor device and a manufacturing method thereof are provided. The bilateral conduction semiconductor device includes an epitaxial layer having a first conductive type and a first trench, a first gate conductive layer disposed on a sidewall of the first trench, a second gate conductive layer disposed opposite to the first gate conductive layer, and a doped region having the first conductive type. The doped region is disposed in the epitaxial layer between the first gate conductive layer and the second gate conductive layer, and a doped concentration of the doped region is larger than a doped concentration of the epitaxial layer.
Abstract:
A power semiconductor device having low gate input resistance and a manufacturing method thereof are provided. The power semiconductor device includes a substrate, at least a trench transistor, a conductive layer, a metal contact plug, an insulating layer, an interlayer dielectric, a gate metal layer, and a source metal layer. The metal contact plug can serve as a buried gate metal bus line, and the metal contact plug can pass under the source metal layer and keeps the area of the source metal layer complete. Accordingly, the present invention can provide a lower gate input resistance without dividing the source metal layer, so the source metal layer can have a larger and complete area for the following packaging and bonding process.
Abstract:
The safe-operating area (SOA) in a heterojunction bipolar transistor (HBT) is improved by providing a collector region in the transistor having a graded (uniformly or stepped) doping between the base region and the underlying subcollector region with the collector doping being lower near the base and higher near the subcollector and with the collector doping being less than the doping of the subcollector. The non-uniformly doped collector reduces Kirk effect induced breakdown when collector current increases.