Abstract:
A paired piezoelectric micromotor for providing motion relative to a body, including two rectangular piezoelectric plates, each piezoelectric plate having first and second long edges, first and second short edges, front and back faces, electrodes attached to the front and back faces thereof and a ceramic spacer attached to the first long edge at the end thereof near the first short edge, the ceramic spacer engaging a surface of the body. The first short edge of the first plate is adjacent and substantially parallel to the first short edge of the second plate. Resilient force is applied to a portion of each plate, pressing the ceramic spacer against the surface of the body. A voltage source electrifies at least some of the electrodes with an excitation voltage.
Abstract:
Methods and systems are provided for treatment of medical devices using surface acoustic waves (SAW) of Rayleigh, “pseudo” Rayleigh and Lamb type. In some embodiments, use of such SAW is controlled such that relative velocity of bacteria is achieved wherein the vibration amplitude of the bacteria is smaller than a Z-potential repulsive zone of the bacteria, thus preventing biofilm formation on the medical devices. In some embodiments, systems of the present invention are powered by body movements, and may also provide a feedback loop for control of parameters. In some embodiments, the medical devices of the present invention are comprised of piezoelectric material, and act as self-actuators for the system.
Abstract:
An apparatus, system and methods thereof for generating an acoustic lubrication effect along a surface of an in-dwelling medical device that is in contact with a vital tissue in a subject are provided. The vibrations comprise: Hz range cylindrical surface vibrations; or kHz range surface acoustic wave (SAW) vibrations; or a combination thereof. The vibrations create an acoustic lubrication effect that may reduce pain or discomfort in a subject when the apparatus is used with an indwelling medical device. The vibrations may enhance tactile sensation when the medical device is a shoe pad.
Abstract:
A micromotor for moving a body including at least one rectangular piezoelectric plate having long and short edges and first and second faces, electrodes attached to the first and second faces and a ceramic spacer attached to the center of a first one of the edges and operative to be pressed against the body. A resilient force is applied to the center of a second edge opposite the first edge, whereby the ceramic spacer is pressed against the body. At least some of the electrodes are electrified by either an AC or an asymmetric unipolar pulsed voltage.
Abstract:
A paired piezoelectric micromotor for providing motion relative to a body, including two rectangular piezoelectric plates, each piezoelectric plate having first and second long edges, first and second short edges, front and back faces, electrodes attached to the front and back faces thereof and a ceramic spacer attached to the first long edge at the end thereof near the first short edge, the ceramic spacer engaging a surface of the body. The first short edge of the first plate is adjacent and substantially parallel to the first short edge of the second plate. Resilient force is applied to a portion of each plate, pressing the ceramic spacer against the surface of the body. A voltage source electrifies at least some of the electrodes with an excitation voltage.
Abstract:
A disc drive including a piezoelectric plate having two long and two short edges and a spacer attached to one of the long edges and at least one arm pivotable about an axis, the arm having first and second ends spaced from the axis and on opposite sides thereof, a read/write head attached to the first end of the arm and a rigid element on the second end of the arm, wherein the spacer of the piezoelectric plate is resiliently urged against the rigid element. In one preferred embodiment of the invention, the piezoelectric plate is stationary. In another preferred embodiment of the invention, the piezoelectric plate is movable with respect to the axis.
Abstract:
Methods and devices for treating skin include a skin-contacting portion, an actuator and a processor, wherein activation of the actuator causes surface acoustic waves of Rayleigh, “pseudo” Rayleigh types to be produced on the skin around the actuator. In a location which is under the actuator, the actuator produces tension and repulsion of skin particles. These surface acoustic waves can be used to provide treatment to the skin, including wound healing, non-adhesion of bandages, reduced infection, reduced pain and cosmetic enhancements. The skin-contacting portion may be a patch or bandage, a glove, a hand-held device, or any other suitable configuration. The actuator is incorporated into the skin-contacting portion.
Abstract:
A urinary catheter clip-on device applies surface acoustic waves of Rayleigh-Lamb and/or Love type to a urinary catheter for preventing biofilms on the catheter surfaces. The bacteria is forced to move relative to the vibrating catheter surface. The amplitudes of bacteria vibrations are in nanometer range. The relative motion of bacteria results in bacteria quorum sensing, and disrupts the bacteria attachment process. The method is preventive as surface acoustic waves create low acoustic energy and bacteria is not killed.
Abstract:
Methods and devices for treating skin include a skin-contacting portion, an actuator and a processor, wherein activation of the actuator causes surface acoustic waves of Rayleigh, “pseudo” Rayleigh types to be produced on the skin around the actuator. In a location which is under the actuator, the actuator produces tension and repulsion of skin particles. These surface acoustic waves can be used to provide treatment to the skin, including wound healing, non-adhesion of bandages, reduced infection, reduced pain and cosmetic enhancements. The skin-contacting portion may be a patch or bandage, a glove, a hand-held device, or any other suitable configuration. The actuator is incorporated into the skin-contacting portion.
Abstract:
An apparatus, system and method for preventing or treating biofilm associated with catheters. A piezo-ceramic element may be attached to a catheter, and a vibration processor may be connected to the piezo-ceramic element. The vibration processor may provide electric signals that generate acoustic vibrations in the piezo-ceramic element, causing vibrations in or around the catheter. These vibrations may be particularly administered to disperse microbe colonies, thereby preventing or inhibiting formation of biofilm that may lead to infections. Vibrations may be amplified significantly due to resonance conditions in the catheter balloon, which may be powerful enough to be used to disperse microbe colonies that have grouped around the catheter or are attempting to do so.