Abstract:
Data organizing systems and methods organize a plurality of data files using meta data or other data relating to a plurality of data files by extracting the related data for at least some of the data files, organizing the extracted related data and dividing at least some of the data files into groups based on the extracted related data and an input parameter value.
Abstract:
Embodiments of the present invention provide a system and method for discriminatively selecting keyframes that are representative of segments of a source digital media and at the same time distinguishable from other keyframes representing other segments of the digital media. The method and system, in one embodiment, includes pre-processing the source digital media to obtain feature vectors for frames of the media. Discriminatively selecting a keyframe as a representative for each segment of a source digital media wherein said discriminative selection includes determining a similarity measure for each candidate keyframe and determining a dis-similarity measure for each candidate keyframe and selecting the keyframe with the highest goodness value computing from the similarity and dis-similarity measures.
Abstract:
A system in accordance with one embodiment of the present invention comprises a device for facilitating video communication between a remote participant and another location. The device can comprise a screen adapted to display the remote participant, the screen having a posture adapted to be controlled by the remote participant. A camera can be mounted adjacent to the screen, and can allow the subject to view a selected conference participant or a desired location such that when the camera is trained on the selected participant or desired location a gaze of the remote participant displayed by the screen appears substantially directed at the selected participant or desired location.
Abstract:
Systems and methods determine the location of a microphone with an unknown location, given the location of a number of other microphones by determining a difference in an arrival time between a first audio signal generated by and microphone with a known location and a second audio signal generated by another microphone with an unknown location, wherein the first and second audio signals are a representation of a substantially same sound emitted from an acoustic source with a known location; determining, based on at least the determined difference in arrival time, a distance between the acoustic source with the known location and the microphone with the unknown location; and determining, based on the determined distance between the acoustic source with the known location and the microphone with the unknown location, the location of the unknown microphone.
Abstract:
Provides a system for detecting an intersection between more than one panoramic video sequence and detecting the orientation of the sequences forming the intersection. Video images and corresponding location data are received. If required, the images and location data is processed to ensure the images contain location data. An intersection between two paths is then derived from the video images by deriving a rough intersection between two images, determining a neighborhood for the two images, and dividing each image in the neighborhood into strips. An identifying value is derived from each strip to create a row of strip values which are then converted to the frequency domain. A distance measure is taken between strips in the frequency domain, and the intersection is determined from the images having the smallest distance measure between them. The orientation between the two paths may also be determined in the frequency domain by using the phases of signals representing the images in the Fourier domain or performing a circular cross correlation of two vectors representing the images.
Abstract:
Algorithms to show multiple images at the maximum possible resolution are proposed. Rather than reducing the resolution of each image, the portion of each image that is actually shown is reduced. The algorithms select which part of each image is to be shown. In one embodiment of the invention, changing the parameters over time further increases the information displayed.
Abstract:
Systems and methods determine the location of a microphone with an unknown location, given the location of a number of other microphones by determining a difference in an arrival time between a first audio signal generated by and microphone with a known location and a second audio signal generated by another microphone with an unknown location, wherein the first and second audio signals are a representation of a substantially same sound emitted from an acoustic source with a known location; determining, based on at least the determined difference in arrival time, a distance between the acoustic source with the known location and the microphone with the unknown location; and determining, based on the determined distance between the acoustic source with the known location and the microphone with the unknown location, the location of the unknown microphone.
Abstract:
A computer assisted meeting capture system in which camera selection, camera control and sensor notification of candidate activity event for camera image changes are integrated. The information is displayed on a representation of a room layout. Camera switch suggestions are notified to the operator through the use of low-overhead cognitive cues such as changeable human sensible display characteristics.
Abstract:
A system for providing a dynamic audio-visual environment using an eSurface situated in a room environment; a projector situated for projecting images onto the eSurface; a camera situated to picture the room environment; a central processor coupled to the eSurface, the projector and the camera. The processor receives pictures from the camera for detecting the location of the eSurface; and controls the projector to aim its projection beam onto the eSurface. The eSurface is a sheet-like surface having the property of accepting optically projected image when powered, and retaining the projected image after the power is turned off.
Abstract:
Music videos are automatically produced from source audio and video signals. The music video contains edited portions of the video signal synchronized with the audio signal. An embodiment detects transition points in the audio signal and the video signal. The transition points are used to align in time the video and audio signals. The video signal is edited according to its alignment with the audio signal. The resulting edited video signal is merged with the audio signal to form a music video.