Abstract:
A method for producing a non-aqueous electrolyte secondary cell by preparing a positive electrode by applying a positive electrode mixture onto a positive electrode core material, the mixture containing a positive electrode active material mainly made of a lithium nickel composite oxide and a binding agent containing polyvinylidene fluoride; measuring the amount of carbon dioxide gas generated when a layer of the positive electrode mixture is removed out of the positive electrode and the layer is heated to 200° C. or higher and 400° C. or lower in an inactive gas atmosphere; selecting a positive electrode satisfying the following formulas: y
Abstract translation:一种通过在正极芯材上涂布正极合剂制备正极来制造非水电解质二次电池的方法,该混合物含有主要由锂镍复合氧化物制成的正极活性物质和含有 聚偏氟乙烯; 测量当正极混合物层从正极中除去并且在惰性气体气氛中将层加热至200℃以上且400℃以下时产生的二氧化碳气体的量; 选择满足以下公式的正极:y <(1.31x-258)/ 1000000(200&nlE; x <300)式3 y <1.20×225/1000000(300&nlE; x&nlE; 400)式4其中x是加热 温度(℃),y是测量每1g镍镍复合氧化物的二氧化碳气体量(摩尔/克); 并通过使用所选择的正极制备非水电解质二次电池。
Abstract:
A positive electrode active material is formed of a lithium containing layered oxide. The lithium containing layered oxide contains either or both of LiANaBMnxCoyO2±α that belongs to a space group P63mc or LiANaBMnxCoyO2±α that belongs to a space group Cmca. The lithium containing layered oxide contains the LiANaBMnxCoyO2±α as a solid solution, a mixture or both of them. In the LiANaBMnxCoyO2±α, 0.5≦A≦1.2, 0
Abstract:
A non-aqueous electrolyte secondary battery includes a positive electrode having a positive electrode mixture, a negative electrode, and a non-aqueous electrolyte. The positive electrode mixture contains as a positive electrode active material Li1+x(MnyNizCo1−y−z)1−xO2, where 0
Abstract translation:非水电解质二次电池包括具有正极混合物,负极和非水电解质的正极。 正极混合物含有作为正极活性物质Li 1 + x N(Mn y Ni z z Co 1-y z) 其中0
Abstract:
A method for producing a non-aqueous electrolyte secondary cell by preparing a positive electrode by applying a positive electrode mixture onto a positive electrode core material, the mixture containing a positive electrode active material mainly made of a lithium nickel composite oxide and a binding agent containing polyvinylidene fluoride; measuring the amount of carbon dioxide gas generated when a layer of the positive electrode mixture is removed out of the positive electrode and the layer is heated to 200° C. or higher and 400° C. or lower in an inactive gas atmosphere; selecting a positive electrode satisfying the following formulas: y
Abstract translation:一种通过在正极芯材上涂布正极合剂制备正极来制造非水电解质二次电池的方法,该混合物含有主要由锂镍复合氧化物制成的正极活性物质和含有 聚偏氟乙烯; 测量当正极混合物层从正极中除去并且在惰性气体气氛中将层加热至200℃以上且400℃以下时产生的二氧化碳气体的量; 选择满足以下公式的正极:y <(0.27x-51)/ 1000000(200&nlE; x <400)式1 y <57/1000000(400&nlE; x&nlE; 1500)式2其中x是加热温度 C.),y是测量每1g镍镍复合氧化物的二氧化碳气体量(摩尔/ g); 并通过使用所选择的正极制备非水电解质二次电池。
Abstract:
A positive electrode active material quality judgment method that can easily and accurately judge the quality of a positive electrode active material used in a non-aqueous electrolyte secondary cell without having to complete the positive electrode. The positive electrode active material quality judgment method includes: heating a positive electrode active material mainly made of a lithium nickel composite oxide to a temperature x (° C.) of 200° C. or higher and 1500° C. or lower; measuring the amount of carbon dioxide gas occurring from the heating; and the positive electrode active material as a suitable positive electrode active material when the positive electrode active material satisfies formulas 1 and 2: y
Abstract translation:一种正极活性物质评价方法,其能够容易且准确地判断在非水电解质二次电池中使用的正极活性物质的质量,而无需完成正极。 正极活性物质判定方法包括:将主要由锂镍复合氧化物形成的正极活性物质加热至200℃以上且1500℃以下的温度x(℃) 测量从加热发生的二氧化碳气体的量; 正极活性物质为正极活性物质时,正极活性物质满足式1和2:y <(0.27x-51)/ 1000000(200&nlE; x <400)式1 y <57/1000000( 400&nlE; x&nlE; 1500)式2其中x是加热温度x(℃),y是在加热到加热时每1g正极活性物质发生的二氧化碳气体量(摩尔/克) 温度x(℃)。
Abstract:
A non-aqueous electrolyte secondary battery having a negative electrode, a non-aqueous electrolyte, and a positive electrode having a positive electrode active material comprising sodium oxide, is characterized in that the sodium oxide contains lithium, and the molar amount of the lithium is less than the molar amount of the sodium.
Abstract:
A positive electrode active material quality judgment method that can easily and accurately judge the quality of a positive electrode active material used in a non-aqueous electrolyte secondary cell without having to complete the positive electrode. The positive electrode active material quality judgment method includes: heating a positive electrode active material mainly made of a lithium nickel composite oxide to a temperature x (° C.) of 200° C. or higher and 400° C. or lower; measuring the amount of carbon dioxide gas generated from the heating; and the positive electrode active material as a suitable positive electrode active material when the positive electrode active material satisfies formulas 3 and 4: y
Abstract translation:一种正极活性物质评价方法,其能够容易且准确地判断在非水电解质二次电池中使用的正极活性物质的质量,而无需完成正极。 正极活性物质判定方法包括:将主要由锂镍复合氧化物形成的正极活性物质加热至200℃以上且400℃以下的温度x(℃) 测量从加热产生的二氧化碳气体的量; 和正极活性物质当正极活性物质满足式3和4时,正极活性物质为:y <(1.31×258)/ 1000000(200&nlE; x <300)式3 y <1.20×225 公式4其中x是加热温度x(℃),y是每1g 1g正极活性物质在加热时产生的二氧化碳气体量(摩尔/克)(g / g) 加热温度x(℃)。
Abstract:
A mixed positive electrode active material is used. The mixed positive electrode active material is obtained by mixing a layered oxide whose initial charge-discharge efficiency when lithium metal is used for a counter electrode is less than 100% (hereinafter referred to as a first layered oxide) and a layered oxide whose initial charge-discharge efficiency is 100% or more (hereinafter referred to as a second layered oxide). Examples of the first layered oxide include Li1+aMnxCoyNizO2. A sodium oxide such as LiANaBMnXCoYNiZO2 other than a layered compound from which lithium is previously extracted by acid treatment or the like can be used as the second layered oxide whose initial charge-discharge efficiency is 100% or more. A layered oxide obtained by replacing (ion exchange) sodium in the foregoing LiANaBMnXCoYNiZO2 with lithium can be also used as the second layered oxide.
Abstract:
A positive electrode active material including lithium (Li), nickel (Ni), manganese (Mn) and a transition metal that can be in the hexavalent state is used. As the transition metal that can be in the hexavalent state, for example, one or both of tungsten (W) and molybdenum (Mo) can be used. As the positive electrode active material including a plurality of materials as mentioned above, LiNi0.5Mn0.5O2 can be used. As a negative electrode, a carbon material or a silicon material capable of storing and releasing lithium ions can be used.
Abstract:
A positive electrode active material is made of sodium containing oxide. The sodium containing oxide contains NaALiBMO2±α that belongs to a space group P63/mmc of a hexagonal system, where the M includes at least one of manganese (Mn) and cobalt (Co). In the NaALiBMO2±α, the composition ratio A of sodium (Na) is not less than 0.5 and not more than 1.1, the composition ratio B of lithium (Li) is larger than 0 and not more than 0.3, and the α is not less than 0 and not more than 0.3.