Abstract:
A method for patterning a multilayered conductor/substrate structure includes the steps of: providing a multilayered conductor/substrate structure which includes a plastic substrate and at least one conductive layer overlying the plastic substrate; and irradiating the multilayered conductor/substrate structure with ultraviolet radiation such that portions of the at least one conductive layer are ablated therefrom. In a preferred embodiment, a projection-type excimer laser system is employed to rapidly and precisely ablate a pattern from a mask into the at least one conductive layer. Preferably, the excimer laser is controlled in consideration of how well the at least one conductive layer absorbs radiation at particular wavelengths. Preferably, a fluence of the excimer laser is controlled in consideration of an ablation threshold level of at least one conductive layer. According to a preferred method, the excimer laser is employed and controlled to ablate portions of the at least one conductive layer without completely decomposing the at least one functional layer therebeneath.
Abstract:
A method for assembling a semiconductor device including the steps of providing a penetrable substrate having an adhesive surface and a plurality of dies disposed on the adhesive surface; providing a strap lead substrate having a plurality of strap leads disposed thereon; dispensing a first plurality of strap leads from the plurality of strap leads; providing a plurality of pins; bringing the penetrable substrate into close proximity with the strap lead substrate so as to bringing the first plurality of strap leads into contact with the plurality of dies; pressing the first plurality of strap leads against the plurality of dies using the plurality of pins; and, moving the penetrable substrate away from the strap lead substrate while using the plurality of pins to maintain contact between the first plurality of strap leads and the plurality of dies. An apparatus for assembling a semiconductor device is also disclosed.
Abstract:
A method for creating a plurality of semiconductor assemblies that includes the steps of creating a plurality of quasi-wafers, each quasi-wafer comprising a plurality of semiconductor devices; transferring the plurality of semiconductor devices on each quasi-wafers onto a carrier having a functional adhesive; and bonding the plurality of semiconductor devices to a substrate.
Abstract:
A method of thermocompressive bonding of one or more electrical devices using individual heating elements and a resilient member to force the individual heating elements into compressive engagement with the electrical devices is provided. The individual heating elements may be Curie-point heating elements or conventional resistive heating elements. A method of thermocompressive bonding of one or more electrical devices using a transparent flexible platen and thermal radiation is also provided. In one embodiment, the thermal radiation is near infra-red thermal radiation and the transparent flexible platen is composed of silicone rubber. The bonding material may be an adhesive or a thermoplastic bonding material. A method of capacitively coupling a semiconductor chip to an electrical component with a pressure sensitive adhesive is also provided. The method includes compressing the chip by forcing a flexible platen of a bonding device into compressive engagement with the semiconductor chip.
Abstract:
A method for patterning a multilayered conductor/substrate structure includes the steps of: providing a multilayered conductor/substrate structure which includes a plastic substrate and at least one conductive layer overlying the plastic substrate; and irradiating the multilayered conductor/substrate structure with ultraviolet radiation such that portions of the at least one conductive layer are ablated therefrom. In a preferred embodiment, a projection-type excimer laser system is employed to rapidly and precisely ablate a pattern from a mask into the at least one conductive layer. Preferably, the excimer laser is controlled in consideration of how well the at least one conductive layer absorbs radiation at particular wavelengths. Preferably, a fluence of the excimer laser is controlled in consideration of an ablation threshold level of at least one conductive layer. According to a preferred method, the excimer laser is employed and controlled to ablate portions of the at least one conductive layer without completely decomposing the at least one functional layer therebeneath.