Abstract:
A method of making a radio frequency identification (RFID) device includes temporarily adhering an RFID interposer to an antenna, and subsequently ultrasonically welding the interposer leads to the antenna. The temporary adhering may involve use of any of variety of suitable adhering materials, such as an adhesive, wax, or even water. The adhering and the ultrasonic welding may be parts of a process that involves mostly continuous movement of an antenna web that has multiple antennas on it. The adhering material temporarily holds the interposer in place prior to the ultrasonic welding, which is important in a process that involves a moving web. The adhering may be such that there is no material between the conductive material interposer leads, and conductive material of the antenna. This allows the ultrasonic welding to proceed without any need to push intervening material aside.
Abstract:
A method for assembling a semiconductor device from a plurality of chips is disclosed. The method includes providing a penetrable carrier having a penetrable carrier substrate and an adhesive layer; providing a plurality of chips disposed on a surface of the adhesive layer; providing a second substrate; bringing the surface of the adhesive layer of the penetrable carrier close to the second substrate; pinning the plurality of chips against the second substrate through the penetrable carrier; and, moving the penetrable carrier away from the second substrate such that the plurality of pinned chips are removed from the surface of the adhesive layer on the penetrable carrier.
Abstract:
A method of making a radio frequency identification (RFID) device includes temporarily adhering an RFID interposer to an antenna, and subsequently ultrasonically welding the interposer leads to the antenna. The temporary adhering may involve use of any of variety of suitable adhering materials, such as an adhesive, wax, or even water. The adhering and the ultrasonic welding may be parts of a process that involves mostly continuous movement of an antenna web that has multiple antennas on it. The adhering material temporarily holds the interposer in place prior to the ultrasonic welding, which is important in a process that involves a moving web. The adhering may be such that there is no material between the conductive material interposer leads, and conductive material of the antenna. This allows the ultrasonic welding to proceed without any need to push intervening material aside.
Abstract:
A process is disclosed for creating semiconductor devices such as RFID assemblies wherein an array of dies mounted to a substrate is spaced apart at a first pitch, and the substrate is removed after the positions of the dies in the array is fixed by a solidifiable substance. The solidifiable substance is then removed without changing the relative positions of the dies in the array. All or a selected portion of the array of dies is then electrically attached to a plurality of straps or interposers arranged in a corresponding array. The spacing, or pitch, between the dies in the die array may be changed before or after the substrate is removed to match the pitch of the straps or interposers in the corresponding array. An RFID device created using the process inventive is also disclosed.
Abstract:
A process is disclosed for creating semiconductor devices such as RFID assemblies wherein an array of dies mounted to a substrate is spaced apart at a first pitch, and the substrate is removed after the positions of the dies in the array is fixed by a solidifiable substance. The solidifiable substance is then removed without changing the relative positions of the dies in the array. All or a selected portion of the array of dies is then electrically attached to a plurality of straps or interposers arranged in a corresponding array. The spacing, or pitch, between the dies in the die array may be changed before or after the substrate is removed to match the pitch of the straps or interposers in the corresponding array. An RFID device created using the process inventive is also disclosed.
Abstract:
A process is disclosed for creating semiconductor devices such as RFID assemblies wherein an array of dies is spaced apart at a pitch matching the pitch of straps on a web of straps before they are mounted to a chip carrier substrate. The substrate is then cut into strips to form one or more linear aggregations of dies. The linear aggregation of dies is then transferred by an assembly mechanism onto the web of straps and electrically attached to a plurality of straps or interposers arranged in a corresponding array. The spacing, or pitch, between the dies in the die array may be changed to match the pitch of the straps or interposers in the corresponding array before or after a wafer substrate is removed from the die array. An RFID device created using the process inventive is also disclosed.
Abstract:
A method for patterning a multilayered conductor/substrate structure includes the steps of: providing a multilayered conductor/substrate structure which includes a plastic substrate and at least one conductive layer overlying the plastic substrate; and irradiating the multilayered conductor/substrate structure with ultraviolet radiation such that portions of the at least one conductive layer are ablated therefrom. In a preferred embodiment, a projection-type excimer laser system is employed to rapidly and precisely ablate a pattern from a mask into the at least one conductive layer. Preferably, the excimer laser is controlled in consideration of how well the at least one conductive layer absorbs radiation at particular wavelengths. Preferably, a fluence of the excimer laser is controlled in consideration of an ablation threshold level of at least one conductive layer. According to a preferred method, the excimer laser is employed and controlled to ablate portions of the at least one conductive layer without completely decomposing the at least one functional layer therebeneath.
Abstract:
A method for assembling a semiconductor device including the steps of providing a penetrable substrate having an adhesive surface and a plurality of dies disposed on the adhesive surface; providing a strap lead substrate having a plurality of strap leads disposed thereon; dispensing a first plurality of strap leads from the plurality of strap leads; providing a plurality of pins; bringing the penetrable substrate into close proximity with the strap lead substrate so as to bringing the first plurality of strap leads into contact with the plurality of dies; pressing the first plurality of strap leads against the plurality of dies using the plurality of pins; and, moving the penetrable substrate away from the strap lead substrate while using the plurality of pins to maintain contact between the first plurality of strap leads and the plurality of dies. An apparatus for assembling a semiconductor device is also disclosed.
Abstract:
A process is disclosed for creating semiconductor devices such as RFID assemblies wherein an array of dies mounted to a substrate is spaced apart at a first pitch, and the substrate is removed after the positions of the dies in the array is fixed by a solidifiable substance. The solidifiable substance is then removed without changing the relative positions of the dies in the array. All or a selected portion of the array of dies is then electrically attached to a plurality of straps or interposers arranged in a corresponding array. The spacing, or pitch, between the dies in the die array may be changed before or after the substrate is removed to match the pitch of the straps or interposers in the corresponding array. An RFID device created using the process inventive is also disclosed.
Abstract:
A process is disclosed for creating semiconductor devices such as RFID assemblies wherein an array of dies mounted to a substrate is spaced apart at a first pitch, and the substrate is removed after the positions of the dies in the array is fixed by a solidifiable substance. The solidifiable substance is then removed without changing the relative positions of the dies in the array. All or a selected portion of the array of dies is then electrically attached to a plurality of straps or interposers arranged in a corresponding array. The spacing, or pitch, between the dies in the die array may be changed before or after the substrate is removed to match the pitch of the straps or interposers in the corresponding array. An RFID device created using the process inventive is also disclosed.