Abstract:
Provided is a method for improving thermal stability of polypropylene carbonate and, more particularly, a method of end capping a molecular chain of polypropylene carbonate using a urethane group by adding isocyanates or diisocyanates to a polypropylene carbonate resin, which may optionally be a mixture containing tertiary polyol, so as to delay thermal degradation of the polypropylene carbonate at a high temperature, thereby securing desired thermal stability. Especially, the method capable of being easily applied to reactive extrusion after preparing the polypropylene carbonate has been proposed, thus simplifying production processes and ensuring economical advantages. Moreover, the above method does not deteriorate transparency and specific smoke density characteristics at combustion, which are advantages of the polypropylene carbonate.
Abstract:
The present invention relates to a multilayer film coextruded from an aliphatic polycarbonate and polylactic acid-based polymer and a method for producing the same. According to the present invention, a multilayer film having excellent adhesive property can be manufactured even without a separate adhesive layer.
Abstract:
Provided is preparation of poly(alkylene carbonate) through alternating copolymerization of carbon dioxide and epoxide. According to the disclosure, by introducing a diepoxide compound to alternating copolymerization of carbon dioxide and epoxide compound using a metal(III) prepared with salen-type ligands containing quaternary ammonium salt as a catalyst, some of the polymer chains may be cross-linked to thus increase an average molecular weight of the copolymer and extend a distribution of molecular weight. A resin prepared according to this method may have high mechanical strength and rheological advantages.
Abstract:
The present invention relates to a multilayer film coextruded from an aliphatic polycarbonate and polylactic acid-based polymer and a method for producing the same. According to the present invention, a multilayer film having excellent adhesive property can be manufactured even without a separate adhesive layer.
Abstract:
Provided is an eco-friendly rotogravure hot melt ink composition. More specifically, the present invention provides the rotogravure hot melt ink composition meeting requirements of a carbon footprint system by using, as a vehicle, poly propylene carbonate prepared using carbon dioxide as a raw material. The rotogravure hot melt ink prepared by the composition of the present invention has a higher printing density and more easily performs printing at low temperature than a poly vinyl acetate based hot melt ink according to the related art.