Abstract:
A copolymer suitable for use as contact lenses, comprising a polymerization product of (a) at least one monomer selected from methyldi(trimethylsiloxy)sylylpropylglycerol methacrylate and methyldi(trimethylsiloxy)sylylpropylglycerolethyl methacrylate, (b) a hydrophilic monomer, (c) a methacrylic acid alkyl ester and (d) a cross-linking agent having at least two copolymerizable functional groups. Contact lenses made of the above copolymer has excellent oxygen permeability and can be comfortably worn continuously for a long term without a foreign body sensation and pain.
Abstract:
A copolymer suitable for use as soft contact lenses, comprising a polymerization product of (a) at least one monomer selected from methyldi(trimethylsiloxy)sylylpropylglycerol methacrylate and methyldi(trimethylsiloxy)sylylpropylglycerolethyl methacrylate, (b) a hydrophilic monomer and (c) a cross-linking agent having at least two copolymerizable functional groups. Soft contact lens made of the above copolymer has excellent oxygen permeability in spite of low water content and can be comfortably worn continuously for a long term without a foreign body sensation and pain.
Abstract:
A process for manufacturing high toughness synthetic high polymers for soft contact lenses comprising the steps of: preparing a five-component solution by adding to a predominant two-components solution of a 2-hydroxyethyl methacrylate monomer and n-amyl methacrylate monomer a vinyl propionate monomer and a vinyl acetate monomer as auxiliary components with further addition of an initiator for polymerization, followed by mixing to provide an intimate mixture or solution; injecting the solution into a mold; preferably closing the mold during heating and co-polymerizing of the solution in the mold; and cooling the product, followed by removal thereof from the mold. A synthetic high polymer manufactured according to the process of this invention is high in hydrophilicity, optical performance and machinability, which fulfills the requirements for manufacturing conventional soft contact lens. In addition the synthetic high polymer exhibits tenacious elasticity and, when hydrated and swollen, has no tendency to break or crack, thus being highly suitable as the material for soft contact lens with high durability. Moreover, the synthetic high polymer of this invention can be used for the manufacture of artificial corneas and optical lenses for medical use, and also, when dyed, for the manufacture of artificial eyes and iris contact lenses.
Abstract:
A method of coloring a water-absorbable plastic partially or totally in a single color or multiple colors in such a manner that no migration or separation of the coloring agents used can take place. A copolymer of a coupler monomer and a water-absorbable plastic monomer, a polymer of a coupler polymer and a water-absorbable plastic monomer or a polymer of a coupler monomer and a water-absorbable plastic polymer is formed into an intermediate product shaped in the form of any desired final product. The intermediate product is immersed in an aqueous solution of a developer consisting of a diazonium double salt and allowed to swell, whereby the diazo-component of the developer penetrates into the plastic. The swollen product is then immersed in an aqueous acid or alkaline solution having an optimum pH value for coupling reaction to allow formation of an azoic dye on the plastic as a result of the coupling reaction. A partially colored plastic is produced by application of ultraviolet rays to a portion or portions of the plastic on which no coloring is required, whereby the diazo-component on those portions is decomposed to leave those portions uncolored. Multiple coloring is effected by repeating the partial coloring process by changing diazonium double salts.