Abstract:
An organic LED is provided that can stably and efficiently emit light as a result of a heat resistant hole drift layer. The organic LED can include, in order, a substrate, a hole injection electrode layer, a hole drift layer, an organic light emitting layer, an electron drift layer and an electron injection electrode layer. The hole drift layer comprises a diamond film with a boron concentration of between about 1.0×1019 and about 1.0×1021/cm3. An optically transparent layer can be formed on the electron injection electrode layer.
Abstract translation:提供能够由于耐热孔漂移层而稳定且有效地发光的有机LED。 有机LED可以依次包括基板,空穴注入电极层,空穴漂移层,有机发光层,电子漂移层和电子注入电极层。 孔漂移层包括硼浓度在约1.0×1019至约1.0×10 21 / cm 3之间的金刚石膜。 可以在电子注入电极层上形成光透明层。
Abstract:
Provided is a process for producing a glass-like carbon deformed molded article having a deformed section (typically, an elliptical section or a section composed of partial circles and linear portions), such as a glass-like carbon member in a deformed pipe form or a bent pipe, with relative ease and a good dimensional accuracy. The process comprises the step of molding a thermosetting resin to yield a thermosetting resin molded article, the step of deforming the thermosetting resin molded article plastically in the state that the article is heated, so as to yield a thermosetting resin deformed article, and the step of carbonizing the resultant thermosetting resin deformed article.
Abstract:
A two-phase glass-like carbon member has, in combination, a porous glass-like carbon base, and a dense glass-like carbon surface layer formed on the porous glass-like carbon base. The porous glass-like carbon base can be formed in a large thickness. The-dense glass-like carbon surface layer is superior to the porous glass-like carbon base in gas impermeability, surface hardness and resistance to dusting. The dense glass-like carbon surface layer supplements disadvantages of the porous glass-like carbon base. The two-phase glass-like carbon member can be in a large thickness exceeding 5 mm and in a complicated shape.
Abstract:
A gravitational settling tank including a pressure vessel which precipitates solid content contained in slurry in which coal and solvent are blended, and separates the solid-content concentrated liquid from the supernatant liquid, and a supply pipe which supplies the pressure vessel with the slurry. A main body part and a nozzle part which is connected on the downstream side of the main body part and extends horizontally are provided in the supply pipe. A plurality of holes are provided in the nozzle part. By virtue of this, agitation of the solid-content concentrated liquid which has settled in the bottom is inhibited.
Abstract:
Provided is a process for producing a glass-like carbon deformed molded article having a deformed section (typically, an elliptical section or a section composed of partial circles and linear portions), such as a glass-like carbon member in a deformed pipe form or a bent pipe, with relative ease and a good dimensional accuracy. The process comprises the step of molding a thermosetting resin to yield a thermosetting resin molded article, the step of deforming the thermosetting resin molded article plastically in the state that the article is heated, so as to yield a thermosetting resin deformed article, and the step of carbonizing the resultant thermosetting resin deformed article.
Abstract:
A glasslike carbon is produced by pouring a thermosetting resin having a viscosity of 200 P or less and a mold shrinkage ratio of 2.0% to 8.0% into a concave portion of a mold, forming the thermosetting resin in the mold by heating, demolding the formed resin, and carbonizing the demolded resin.
Abstract:
A carbon substrate is prepared from a molded article of thermosetting resin by heat-treating in an inert atmosphere. The resin is characterized in that the content of Fe, Al, Ni, Co, Cr, and Mg insoluble in the resin is less than 1 ppm each and the content of Ca and Si insoluble in the resin is less than 2 ppm each. The thermosetting resin is further characterized in that the water content is less than 3 wt % and the ratio of the methylene carbon (CH.sub.2) connected to the hydroxyl group (OH) is less than 3% (based on the total carbon number). The carbon substrate prepared in this manner is almost free of defects and voids. It is suitable for use as the substrate of magnetic recording medium. The thermosetting resin may be a powdery or granular one which fluidizes and then cures on heating. A molded article of thermosetting resin is prepared by introducing the resin melt into a mold and curing it with heating under pressure. It is subsequently heat-treated in an inert atmosphere to give a molded article of glass-like carbon.
Abstract:
A fluid heating apparatus is provided, which can efficiently heat a fluid to be heated without contaminating the fluid. The fluid heating apparatus has a heating room including a magnetic-flux permeable material, and having an inlet for introducing a fluid to be heated, and an outlet for exhausting a heat-treated fluid; a plurality of glassy carbon fillers filled in the heating room, each of which is partially or wholly formed in a shape of curved surface or protrusion; and an induction coil disposed outside the heating room for inductively heating the glassy carbon fillers.
Abstract:
Disclosed is an induction heating type pure water heating apparatus capable of heating pure water with efficiency and without contaminating pure water. The apparatus is characterized by including a susceptor formed of glassy carbon with a water absorption coefficient of 0.5 mass % or less, and capable of contacting with pure water, a container made of a magnetic flux transmissive material, and formed so as to accommodate the susceptor and so as to allow pure water to pass therethrough, and an induction coil disposed in such a state as to surround the container or as to be adjacent to the container.
Abstract:
Disclosed is a seamless central diameter expanded hollow molded articles made only of glasslike carbon. A fabrication method of the seamless carbonaceous hollow molded article having an expanded core includes: a cast-molding process, in which a liquid thermosetting resin is poured into a cavity formed between a core and an outer body made of a thermally fusible (or hot meltable) material, and a seamless thermosetting resin molded article having an expanded core is formed in hollow shape; a core flowing out process, in which the thermally fusible material of the cast molded core melts by heating and flows out; and a carbonization process, in which the thermosetting resin molded article is carbonized.