Abstract:
A micromechanical structural element, having a very stable diaphragm, implemented in a pure front process and in a layer construction on a substrate. The layer construction includes at least one sacrificial layer and one diaphragm layer above the sacrificial layer, which is structured for laying bare the diaphragm and generating stabilizing elements on the diaphragm, at least one recess being generated for a stabilizing element of the diaphragm. The structure generated in the sacrificial layer is then at least superficially closed with at least one material layer being deposited above the structured sacrificial layer, this material layer forming at least a part of the diaphragm layer and being structured to generate at least one etch hole for etching the sacrificial layer, which is removed from the region under the etch hole, the diaphragm and the at least one stabilizing element being laid bare, a cavity being created under the diaphragm.
Abstract:
In a micromechanical sensor and/or a method for manufacturing a micromechanical sensor for detecting a state variable of a substance, the sensor includes at least one heating element, one temperature measuring element and optionally an inlet opening into and/or an outlet opening out of the cavity for this purpose. The sensor includes a cavity configured to at least partially receive the substance through one of the inlet openings and discharge it again at least partially through one of the outlets or outlet openings. The at least one state variable of the substance is detected here as a function of at least one variable representing the operation of the at least one heating element and/or the operation of the at least one temperature element.
Abstract:
A mass flow sensor is described. To improve the membrane stability of the known mass flow sensor and to increase the thermal conductivity of a membrane having a greater mechanical stability, in particular the membrane has at least one dielectric or nonconducting adjustment layer with a thermal conductivity which is greater than that of a silicon oxide layer of the same thickness, the adjustment layer being used to adjust the thermal conductivity of the membrane. One of the preferred adjustment layers is polycrystalline silicon.
Abstract:
A method for fabricating micromechanical components, which provides for depositing one or a plurality of sacrificial layers on a silicon substrate and, thereon, a silicon layer. In subsequent method steps, a structure is patterned out of the silicon layer, and the sacrificial layer is removed, at least under one section of the structure. The silicon layer is doped by an implantation process.