Abstract:
A method for fabricating micromechanical components, which provides for depositing one or a plurality of sacrificial layers on a silicon substrate and, thereon, a silicon layer. In subsequent method steps, a structure is patterned out of the silicon layer, and the sacrificial layer is removed, at least under one section of the structure. The silicon layer is doped by an implantation process.
Abstract:
A device for detecting a deformation of a component, for example, in the automotive industry, having a deformable hollow body arrangement assigned as a deformation indicator to the component and having at least one orifice area, and at least one sensor device situated in the particular orifice area for measuring an air flow corresponding to the deformation of the hollow body arrangement. In addition, a method of detecting such a deformation of a component and activating an appropriate safety application is described. The measured data is analyzed by an analyzer unit after measurement of the deformation, and a suitable safety application optionally being activated if the measured data of the at least one sensor device indicates a deformation of hollow body arrangement and thus of the component.
Abstract:
An insert in an injection-molded part is provided, in particular a fastening bush for accommodating a fastening means in a receptacle opening, having at least one outer surface. At least the outer surface has a metallic anticorrosion layer on which a sealing layer is deposited.
Abstract:
In the manufacture of at least one passage in a silicon wafer, in a first method step, starting from a first side of the wafer, a first recess is produced in the wafer, and in a second method step, starting from a second side of the wafer, a second recess is produced in the wafer. The first recess and the second recess are produced such that together they form a passage between the first and second sides of the silicon wafer.
Abstract:
A method for producing a micromechanical component, preferably for fluidic applications having cavities. The component is constructed from two functional layers, the two functional layers being patterned differently using micromechanical methods. A first etch stop layer having a first pattern is applied to a base plate. A first functional layer is applied to the first etch stop layer and to the first contact surfaces of the base plate. A second etch stop layer, having a second pattern, is applied to first functional layer. A second functional layer is applied to the second etch stop layer and to the second contact surfaces of the first functional layer. An etching mask is applied to the second functional layer. The second and the first functional layer are patterned as sacrificial layers by the use of the first and the second etch stop layer by etching methods and/or by using the first and the second etch stop layer. By supplementing patterning of the base plate, additional movable fluidic elements may be implemented, using the method. The method is preferably used for producing a micropump having an epitactic polysilicon layer as the pump diaphragm.
Abstract:
A micromechanical sensor and a method for manufacturing a micromechanical sensor which has at least one membrane are provided. The membrane is made of a first material which is accommodated in a surrounding second material, and the membrane is configured for sensing a medium surrounding it. The membrane is reinforced, at least partly, by a third material at break-sensitive points on the membrane rim. Reinforcement of the membrane rim increases the stability and thus also the service life of the membrane and the sensor.
Abstract:
A method for producing a micromechanical component, preferably for fluidic applications having cavities. The component is constructed from two functional layers, the two functional layers being patterned differently using micromechanical methods. A first etch stop layer having a first pattern is applied to a base plate. A first functional layer is applied to the first etch stop layer and to the first contact surfaces of the base plate. A second etch stop layer, having a second pattern, is applied to first functional layer. A second functional layer is applied to the second etch stop layer and to the second contact surfaces of the first functional layer. An etching mask is applied to the second functional layer. The second and the first functional layer are patterned as sacrificial layers by the use of the first and the second etch stop layer by etching methods and/or by using the first and the second etch stop layer. By supplementing patterning of the base plate, additional movable fluidic elements may be implemented, using the method. The method is preferably used for producing a micropump having an epitactic polysilicon layer as the pump diaphragm.
Abstract:
A microfluidic device for metering a fluid or for the metered dispensing of a fluid is provided, the device having a substrate, a pipette element having a dispensing side, which pipette element has a sealed side, and the device also having a heating device in the region of the sealed side. Alternatively, the microfluidic device is provided with the pipette element having a side that is connected to a reservoir, and a heating device in the region of the side connected to the reservoir.
Abstract:
A micromechanical structural element, having a very stable diaphragm, implemented in a pure front process and in a layer construction on a substrate. The layer construction includes at least one sacrificial layer and one diaphragm layer above the sacrificial layer, which is structured for laying bare the diaphragm and generating stabilizing elements on the diaphragm, at least one recess being generated for a stabilizing element of the diaphragm. The structure generated in the sacrificial layer is then at least superficially closed with at least one material layer being deposited above the structured sacrificial layer, this material layer forming at least a part of the diaphragm layer and being structured to generate at least one etch hole for etching the sacrificial layer, which is removed from the region under the etch hole, the diaphragm and the at least one stabilizing element being laid bare, a cavity being created under the diaphragm.
Abstract:
A sensor element has at least one heater structure, at least one first circuit trace being provided via which current is injected into the heater structure; at least one second circuit trace being provided via which the current is coupled out of the heater structure, and an arrangement for detecting the resistances of individual sections of the heater structure. According to the present invention, the arrangement for detecting the resistances includes additional, high-resistance measuring lines by which the voltage is tapped directly at the individual segments of the heater structure.