Abstract:
A producing method for a diaphragm-type resonant MEMS device includes forming a first silicon oxide film, forming a second silicon oxide film, forming a lower electrode, forming a piezoelectric film, forming an upper electrode, laminating the first silicon oxide film, the second silicon oxide film, the lower electrode, the piezoelectric film, and the upper electrode in this order on a first surface of a silicon substrate, and etching the opposite side surface of the first surface of the silicon substrate by deep reactive ion etching to form a diaphragm structure, in which the proportion R2 of the film thickness t2 of the second silicon oxide film with respect to the sum of the film thickness t1 of the first silicon oxide film and the film thickness t2 of the second silicon oxide film satisfies the following condition: 0.10 μm≦t1≦2.00 μm; and R2≧0.70.
Abstract:
A method of manufacturing microstructures, such as MEMS or NEMS devices, including forming a protective layer on a surface of a moveable component of the microstructure. For example, a silicide layer may be formed on a portion of at least four different surfaces of a poly-silicon mass that is moveable with respect to a substrate of the microstructure. The process may be self-aligning.
Abstract:
A method of providing microelectromechanical structures (MEMS) that are compatible with silicon CMOS electronics is provided. The method providing for processes and manufacturing sequences limiting the maximum exposure of an integrated circuit upon which the MEMS is manufactured to below 350° C., and potentially to below 250° C., thereby allowing direct manufacturing of the MEMS devices onto electronics, such as Si CMOS circuits. The method further providing for the provisioning of MEMS devices with multiple non-conductive structural layers such as silicon carbide separated with small lateral gaps. Such silicon carbide structures offering enhanced material properties, increased environmental and chemical resilience while also allowing novel designs to be implemented taking advantage of the non-conductive material of the structural layer. The use of silicon carbide being beneficial within the formation of MEMS elements such as motors, gears, rotors, translation drives, etc where increased hardness reduces wear of such elements during operation.
Abstract:
A method of manufacturing microstructures, such as MEMS or NEMS devices, including forming a protective layer on a surface of a moveable component of the microstructure. For example, a silicide layer may be formed on one or more surfaces of a poly-silicon mass that is moveable with respect to a substrate of the microstructure. The process may be self-aligning.
Abstract:
The present invention relates to a thin-film structural body formed by using a semiconductor processing technique and a manufacturing method thereof, and particularly in a thin-film structural body constituting a semiconductor acceleration sensor and a manufacturing method thereof, an object of the present invention is to provide a thin-film structural body which allows the thin-film member to be easily stress-controlled, and easily makes the film-thickness of the thin-film member thicker, and a manufacturing method thereof. In order to achieve the above-mentioned object, a thin-film member (8) which forms a mass body (3), beams (7) and fixed electrodes (5) of the semiconductor acceleration sensor is constituted by a plurality of doped polysilicon thin-films (33, 35) that are laminated by performing a step of film deposition of polysilicon while, for example, phosphorous is being doped as impurities plural times.
Abstract:
An airflow sensor including a micro-heater having a film structure, which can reduce a warpage of the film structure even when a thick ness of the film structure to improve a mechanical strength thereof. An airflow sensor is provided with a monocrystalline silicon substrate having a hollow portion therein; a thin film heater portion as a micro-heater arranged above the hollow portion; and a temperature sensor. The thin film heater portion has a laminated structure of a lower thin film, a heater layer, and an upper thin film. The lower and the upper thin film respectively have a tensile stress film and a compressive stress film laminated with the tensile stress film, and are symmetry laminated with respect to the heater layer. The tensile stress film is made up of a Si3N4 film having a great moisture-proof characteristic; and the compressive stress film is made up of a SiO2 film having a great adhesion. Since these stress films cancel their internal stress each other, the internal stress can be released, and a warpage moment can be cancelled so that a warpage of the whole film structure can be restricted. Therefore, the mechanical strength can be improved even if the thickness of the film is increased.
Abstract:
A method for fabricating micromechanical components, which provides for depositing one or a plurality of sacrificial layers on a silicon substrate and, thereon, a silicon layer. In subsequent method steps, a structure is patterned out of the silicon layer, and the sacrificial layer is removed, at least under one section of the structure. The silicon layer is doped by an implantation process.
Abstract:
A producing method for a diaphragm-type resonant MEMS device includes forming a first silicon oxide film, forming a second silicon oxide film, forming a lower electrode, forming a piezoelectric film, forming an upper electrode, laminating the first silicon oxide film, the second silicon oxide film, the lower electrode, the piezoelectric film, and the upper electrode in this order on a first surface of a silicon substrate, and etching the opposite side surface of the first surface of the silicon substrate by deep reactive ion etching to form a diaphragm structure, in which the proportion R2 of the film thickness t2 of the second silicon oxide film with respect to the sum of the film thickness t1 of the first silicon oxide film and the film thickness t2 of the second silicon oxide film satisfies the following condition: 0.10 μm≦t1≦2.00 μm; and R2≧0.70.
Abstract:
A method of manufacturing microstructures, such as MEMS or NEMS devices, including forming a protective layer on a surface of a moveable component of the microstructure. For example, a silicide layer may be formed on one or more surfaces of a poly-silicon mass that is moveable with respect to a substrate of the microstructure. The process may be self-aligning.
Abstract:
A mechanism for reducing stiction in a MEMS device by decreasing an amount of carbon from TEOS-based silicon oxide films that can accumulate on polysilicon surfaces during fabrication is provided. A carbon barrier material film is deposited between one or more polysilicon layer in a MEMS device and the TEOS-based silicon oxide layer. This barrier material blocks diffusion of carbon into the polysilicon, thereby reducing accumulation of carbon on the polysilicon surfaces. By reducing the accumulation of carbon, the opportunity for stiction due to the presence of the carbon is similarly reduced.