Abstract:
Provided is a photovoltaic device with an organic buffer layer for efficiency improvement. The photovoltaic device includes a first electrode and a second electrode disposed opposite to each other, a photoactive layer disposed between the first electrode and the second electrode, and a buffer layer disposed between the photoactive layer and the second electrode. The buffer layer includes a compound including an aromatic organic cation and an anion in a quantity ranging from 30 wt % to 100 wt %, more preferably 50 wt % to 100 wt % with respect to the entire weight of the buffer layer.
Abstract:
An organic light-emitting device including a first electrode, a second electrode opposite to the first electrode, a phosphorescent layer disposed between the first electrode and the second electrode, an electron transport layer disposed between the phosphorescent emission layer and the second electrode, and an electron control layer disposed between the phosphorescent emission layer and the electron transport layer. An organic light-emitting display apparatus including the OLED.
Abstract:
An organic light emitting diode (OLED) display includes a substrate, a first electrode on the substrate, an emission layer on the first electrode, and a second electrode on the emission layer, the second electrode including a transflective conductive layer and a conductive oxide layer.
Abstract:
A photovoltaic device having a relatively high photoelectric efficiency and a method of manufacturing the same. The photovoltaic device according to an embodiment of the present invention includes a transparent electrode, a metal electrode, and a plurality of photovoltaic layers between the transparent electrode and the metal electrode. The photovoltaic layers include light-absorbing compounds for absorbing different light absorption wavelength bands, and each of the photovoltaic layers comprises an electron accepting material. As such, a photovoltaic device according to an embodiment of the present invention includes a plurality of photovoltaic layers having different light absorption regions, and thereby having relatively high photoelectric efficiency.
Abstract:
An extrusion molding apparatus for forming a product having an extrusion molding. The extrusion molding apparatus includes an extruder extruding the product through a die installed at an outlet of the extruder. A second inlet is formed at one side of the die to receive a second synthetic resin. A second extruder feeds the second synthetic resin into the second inlet and a passage in fluid communication with the second inlet. The passage transports the second synthetic resin to nozzle grooves formed in the die, thereby coating the second synthetic resin on a surface of the product extruded from the die having a first synthetic resin.
Abstract:
A touch screen display apparatus including a sensor unit to sense and to process light signals and a pixel unit to drive pixels according to the light signal processing performed by the sensor unit. The touch screen display apparatus includes a substrate; a plurality of pixel units disposed on the substrate, wherein each of the pixel units includes a first electrode, a second electrode, and an emission layer interposed between the first electrode and the second electrode; and a plurality of sensor units disposed on the substrate, wherein each of the sensor units includes a sensor first electrode, a sensor second electrode, and an organic light receiving layer interposed between the sensor first electrode and the sensor second electrode.
Abstract:
A touch screen display apparatus for easily sensing the touch of a user. The touch screen display apparatus includes: a substrate; a display unit formed on the substrate; and a touch panel disposed to face the display unit, where the touch panel comprises a sealing substrate, a first electrode formed on the sealing substrate, a second electrode spaced apart from the first electrode, and a light receiving unit comprising an organic material interposed between the first electrode and the second electrode.
Abstract:
An organic light-emitting device includes a first electrode, a second electrode facing the first electrode, a phosphorescent emission layer between the first electrode and the second electrode, and an electron transport layer between the phosphorescent emission layer and the second electrode. The phosphorescent emission layer includes a compound represented by one of Formulae 1a to 1c, and the electron transport layer includes a metal-containing compound and a compound represented by Formula 2.
Abstract:
Provided is a photovoltaic device with an organic buffer layer for efficiency improvement. The photovoltaic device includes a first electrode and a second electrode disposed opposite to each other, a photoactive layer disposed between the first electrode and the second electrode, and a buffer layer disposed between the photoactive layer and the second electrode. The buffer layer includes a compound including an aromatic organic cation and an anion in a quantity ranging from 30 wt % to 100 wt %, more preferably 50 wt % to 100 wt % with respect to the entire weight of the buffer layer.
Abstract:
An organic light-emitting device includes a first electrode, a second electrode facing the first electrode, a phosphorescent emission layer between the first electrode and the second electrode, and an electron transport layer between the phosphorescent emission layer and the second electrode. The phosphorescent emission layer includes a compound represented by one of Formulae 1a to 1c, and the electron transport layer includes a metal-containing compound and a compound represented by Formula 2.