Abstract:
There is provided a method to fabricate optical taps and waveguide devices in photonic crystal fibers and other fibers with hollow structures. The method involves a preparation step, where the hollow holes inside the fiber are collapsed or partially modified locally; and a waveguide fabrication step, where a femtosecond laser is focused inside the fiber and used to produce optical waveguides that interact in the region that was previously modified in the preparation step.
Abstract:
A multi-view planar near-field scattering tomography system is provided herein. In one aspect the system is developed based on the reformulated signal subspace approach. Utilized for solving the electromagnetic inverse scattering problem, the signal subspace approach is reformulated.The present invention pertains to a computationally efficient approach to an electromagnetic inverse scattering-based permittivity profile estimation technique.In a second aspect, the system is developed at the millimeter-wave and THz frequency range to ensure accuracy by eliminating the multipath effects and without the need for an Anechoic chamber or water as a background medium for clinical, security, and manufacturing applications.
Abstract:
There is provided a system for measuring temperature and strain simultaneously utilizing Brillouin Scattering within an optical fiber. The system has a cladding, a first optical core within the cladding and a second optical core within the cladding and having a different refractive index profile and/or composition than the first core. Means to couple light into and out of said individual optical cores and/or from one optical core to the other within the fiber is provided along with means for calculating strain and temperature characteristics based on measured Brillouin frequencies for said optical cores.
Abstract:
A device including an optical tap and waveguide in the core and cladding of an optical fiber together with a glass ferrule that is angle polished to provide a reflection surface (with or without total internal reflection) that produces a reflection of the light tapped from the optical fiber to reach the bottom of the glass ferrule and propagate in a direction that is perpendicular to (or at least different than the direction of propagation close to) the axis of the optical fiber. The fiber waveguide may be created using an ultrafast fabrication method and the glass ferrule can itself be modified by the same ultrafast laser technique to further manipulate the light traveling inside.
Abstract:
There is provided a system for measuring temperature and strain simultaneously utilizing Brillouin Scattering within an optical fiber. The system has a cladding, a first optical core within the cladding and a second optical core within the cladding and having a different refractive index profile and/or composition than the first core. Means to couple light into and out of said individual optical cores and/or from one optical core to the other within the fiber is provided along with means for calculating strain and temperature characteristics based on measured Brillouin frequencies for said optical cores.
Abstract:
There is provided a system for measuring temperature and strain simultaneously utilizing Brillouin Scattering within an optical fiber. The system has a cladding, a first optical core within the cladding and a second optical core within the cladding and having a different refractive index profile and/or composition than the first core. Means to couple light into and out of said individual optical cores and/or from one optical core to the other within the fiber is provided along with means for calculating strain and temperature characteristics based on measured Brillouin frequencies for said optical cores.
Abstract:
There is provided a system comprising a combination of a peak field booster with elements to increase spectral bandwidth and efficiency for THz generation and detection. The system is configured to achieve a high dynamic range around 3.5 THz while relying on a cost-effective NIR source, allowing the full system to be built at a lower cost and sold at a competitive price.
Abstract:
Bright entangled photon sources including an alignment-free, fiber-based, mechanically-rugged and generic interferometric module are disclosed. The inherent phase-stability of a Sagnac interferometer is deployed. High down-conversion efficiency of periodically poled nonlinear-waveguides is combined with the optical gain of semiconductor optical amplifiers and immunity of fiber optics. A single compact interferometric engine combines these attributes, allowing highly stable, integrable and bright polarization entangled-photon sources operating at room temperature. Using a minimum number of in-line optical parts, the compact module is based on a novel method that enhances the long-term stability and efficiency without compromising the entanglement quality. Besides energy entanglement, polarization entanglement is presented and set through the operational conditions. An optional periodically poled nonlinear waveguide can be hosted to achieve the desired spectral bandwidth and photons generation rate. The result is a zero-maintenance, lightweight, low-power consumption engine of compact and fully-integrable bright polarization-entangled photon sources.
Abstract:
There is provided a biofilm capacitance microbial electrochemical cell (MEC) sensor to measure organic carbon in water and wastewater rapidly and accurately, represented by the 5-day biochemical oxygen demand (BOD5). The MEC runs at charging (open circuit) and discharging (close circuit) conditions alternately to improve the sensitivity, response time and accuracy. The detectable BOD5 concentrations with the biofilm-capacitance MEC range from 5 to 250 mg/L (R2>0.9). The MEC sensor enables BOD5 measurements at every 2 minutes (1 minute charging and 1 minute discharging), indicating semi-continuous quantification of organic carbon in water and wastewater.
Abstract:
There is provided a design of a device consisting of a patterned semiconductor material to provide enhanced detection bandwidth and efficiency of terahertz (THz) pulses with an electro-optic sampling. One device has a semiconductor crystal having a patterned grating on a surface of the semiconductor. In a system, there could optionally be a quarter-wave plate after the semiconductor crystal, followed by a prism. A pair of balanced photodiodes can optionally be provided after the prism. A pulse laser having a NIR beam and THz beam is sent through the semiconductor crystal to the quarter-wave plate to the prism to the photodiodes, wherein the patterned grating on the semiconductor crystal diffracts the NIR beam while the THz remains unaffected. The photodiodes can detect the result.