Abstract:
An apparatus for generating a set of spectral correlation coefficients of an input signal includes: a master laser configured to generate an optical frequency comb signal; a first optical modulator configured to modulate the optical frequency comb signal with an input signal to generate a plurality of spectral copies of the input signal; a dispersive element configured to delay the plurality of spectral copies of the input signal by a wavelength-dependent time delay; a second optical modulator configured to modulate the delayed plurality of spectral copies with a conjugate of the input signal; and an optical comb filter configured to integrate the conjugate modulated plurality of spectral copies of the input signal to generate a set of cyclic autocorrelation coefficients.
Abstract:
A code acquisition module for a direct sequence spread spectrum (DSSS) receiver includes: a Sparse Discrete Fourier transform (SDFT) module configured to perform an SDFT on a finite number of non-uniformly distributed frequencies comprising a preamble of a received DSSS frame to calculate Fourier coefficients for the finite number of non-uniformly distributed frequencies; a multiplier configured to multiply the Fourier coefficients for the finite number of non-uniformly distributed frequencies of the received DSSS frame by complex conjugate Fourier coefficients for the finite number of non-uniformly distributed frequencies to generate a cross-correlation of the received DSSS frame and the complex conjugate Fourier coefficients; and a filter module configured to input the cross-correlation and output a delay estimation for the received DSSS frame.
Abstract:
A method for performing optical wavefront sensing includes providing an amplitude transmission mask having a light input side, a light output side, and an optical transmission axis passing from the light input side to the light output side. The amplitude transmission mask is characterized by a checkerboard pattern having a square unit cell of size Λ. The method also includes directing an incident light field having a wavelength λ to be incident on the light input side and propagating the incident light field through the amplitude transmission mask. The method further includes producing a plurality of diffracted light fields on the light output side and detecting, at a detector disposed a distance L from the amplitude transmission mask, an interferogram associated with the plurality of diffracted light fields. The relation 0
Abstract:
A multispectral beam combiner includes a prism body having an output surface, a fiber entry block attached to the prism body, and a plurality of input fibers attached to the fiber entry block. Each of the plurality of input fibers is operable to support a different wavelength. The multispectral beam combiner also includes a collimator attached to the prism body. The collimator is operable to reflect and collimate light propagating from the fiber entry block. The multispectral beam combiner further includes an immersion grating operable to diffract light propagating from the collimator. The output surface of the prism body is operable to pass light propagating from the immersion grating.
Abstract:
Embodiments of the invention provides methods and systems for synthesizing optical signals with high frequency stability. Using a set of external optical signal manipulators and control systems, embodiments of the invention enhance the resolution of any frequency reference and thereby alleviates the needs for ultra-high-Q cavities in frequency-stable optical signal synthesis. The invention consequently improves the performance of any optical signal generator by a substantial margin, while maintaining the system complexity and power dissipation at levels comparable to the original systems.
Abstract:
Embodiments of the invention provides methods and systems for synthesizing optical signals with high frequency stability. Using a set of external optical signal manipulators and control systems, embodiments of the invention enhance the resolution of any frequency reference and thereby alleviates the needs for ultra-high-Q cavities in frequency-stable optical signal synthesis. The invention consequently improves the performance of any optical signal generator by a substantial margin, while maintaining the system complexity and power dissipation at levels comparable to the original systems.
Abstract:
Embodiments of the invention provide apparatuses and methods for phase correlated seeding of parametric mixer and for generating coherent frequency combs. The parametric mixer may use two phase-correlated optical waves with different carrier frequencies to generate new optical waves centered at frequencies differing from the input waves, while retaining the input wave coherent properties. In the case when parametric mixer is used to generate frequency combs with small frequency pitch, the phase correlation of the input (seed) waves can be achieved by electro-optical modulator and a single master laser. In the case when frequency comb possessing a frequency pitch that is larger than frequency modulation that can be affected by electro-optic modulator, the phase correlation of the input (seed) waves is achieved by combined use of an electro-optical modulator and injection locking to a single or multiple slave lasers.
Abstract:
Various embodiments and methods related to an optical fiber alignment system are provided herein. The optical fiber alignment system includes a controller and a rotation stage having a central axis, a first end, and a second end. The central axis extends from the first end to the second end of the rotation stage. The rotation stage includes an optical fiber channel extending from the first end of the rotation stage to the second end of the rotation stage and may be operationally coupled with the controller. The rotation stage is configured to rotate about the central axis of the rotation stage. The optical fiber alignment system includes a light source positioned to emit light onto the optical fiber channel at an oblique angle from the central axis of the rotation stage. The optical fiber alignment system includes an image sensor positioned adjacent to the second end of the rotation stage.
Abstract:
Various embodiments and methods relating to an optical fiber alignment and splicing system are described herein. The optical fiber alignment and splicing system includes a first rotation stage having a first central axis, a first end, and a second end, and a second rotation stage having a second central axis, a third end, and a fourth end. The first central axis extends from the first end to the second end of the first rotation stage, and the second central axis extends from the third end to the fourth end. The first rotation stage includes a first optical fiber channel extending from the first end of the first rotation stage to the second end of the first rotation stage, and the second rotation stage includes a second optical fiber channel extending from the third end of the second rotation stage to the fourth end of the second rotation stage.
Abstract:
An apparatus includes a first antenna, a tunable optical carrier source, a second antenna, and a delay generation module coupled to the first antenna and the tunable optical carrier source. The apparatus also includes a fixed wavelength optical carrier source, an optical carrier generation module coupled to the fixed wavelength optical carrier source, and a local oscillator generation module. The apparatus further includes a correlative kernel generation and integration module coupled to the delay generation module and the local oscillator generation module and an optoelectronic conversion module coupled to the correlative kernel generation and integration module.