Abstract:
A method for applying a flexible cladding material to an outer surface of an insulation layer for a pipe section includes providing the insulation layer in the shape of a cylinder and providing first and a second supporting elements with a gap therebetween. A layer of the flexible cladding material is arranged between the insulation layer and the first and second supporting elements. The insulation layer and the supporting elements are moved in relation to each other in such manner that the insulation layer and at least part of the layer of the flexible cladding material is moved through the gap between the first and the second supporting elements. The two supporting elements are moved toward one other after the insulation layer and the layer of flexible cladding material has passed through the gap. The flexible cladding material is adhesively connected to the insulation layer during or after the steps.
Abstract:
A noise absorbing panel for use in a sound absorbing guard rail structure having a series of supporting posts, that are preferably vertically oriented, and a series of longitudinal guard rail beams mounted on the side of the guard rail structure facing the road, wherein the noise absorbing panel is mountable to the two adjacently situated supporting posts.
Abstract:
The invention relates to a method of bonding together surfaces of two or more elements, whereby at least one of the two or more elements is a mineral wool element, said mineral wool element(s) being bound by a mineral wool binder, the method comprising the steps of providing two or more elements; applying an adhesive to one or more of the surfaces to be bonded together before, during or after contacting the surfaces to be bonded together with each other; curing the adhesive, wherein the adhesive comprises at least one protein; at least one phenol and/or quinone containing compound, and/or at least one enzyme.
Abstract:
According to the invention, there is provided a method of compressing an uncured man-made vitreous fibre web, the web having two opposed major faces. The method comprising the steps: passing the web along a path; and subjecting the web to thickness compression by applying compression to the two major opposed faces of the web. Compression of each of said major faces of the web is applied by passing the path between converging continuous or discontinuous compression surfaces. Further, the respective major face of the web that is being compressed is in contact with one of the converging compression surfaces, and said converging compression surface is inclined towards the path. Additionally, each inclined converging compression surface applies an amount of compression to the major face of the web with which the respective inclined converging surface is in contact, wherein the amount of compression applied to at least one of the two opposing major faces of the web is adjustable.
Abstract:
A high-strength grid member is provided that comprises two standard Tee-shaped grid members that are vertically aligned to form an I-beam configuration with the strengthening bulbs of each being spaced apart. A plurality of clips is secured to the spaced-apart bulbs by means of fasteners to secure the two grid members together.
Abstract:
The invention relates to a facade construction comprising first thermal barrier elements which are arranged on a supporting framework, in particular of an outer wall of a building, second thermal barrier elements which are arranged on the first thermal barrier elements and a retaining device which is arranged on the supporting framework and holds the first and second thermal barrier elements on the supporting framework. The facade device further comprises an intermediate layer in the form of a multiplicity of mounting plates, which intermediate layer is attached to and supported by the retaining device, wherein the second thermal barrier elements are arranged on the intermediate layer.
Abstract:
A composite exhibiting a thermoelectric effect is provided. The composite comprises a metal sulphosalt, an electrically conductive polymer, and fibres. A method of making a composite material is also provided, comprising mixing the components. The three components work together to provide a low-cost thermoelectric composite that utilises readily available materials. A friction material and a thermoelectric device comprising the composite of the invention are also discussed. Preferably a copper sulphosalt is used, such as tetrahedrite. Preferably man-made vitreous fibres and a binder are used.
Abstract:
The invention relates to a method of making a mineral melt, the method comprising providing a circulating combustion chamber which comprises an upper zone, a lower zone and a base zone, injecting primary particulate fuel and particulate mineral material and primary combustion gas into the upper zone of the circulating combustion chamber, thereby at least partially combusting the primary particulate fuel and thereby melting the particulate mineral material to form a mineral melt and generating exhaust gases, injecting into the lower zone of the circulating combustion chamber, through at least one first burner, secondary combustion gas and gaseous fuel and secondary particulate fuel, wherein the secondary combustion gas and gaseous fuel and secondary particulate fuel are injected via a single first burner, wherein the amount of secondary combustion gas injected via each first burner is insufficient for stoichiometric combustion of the total amount of gaseous fuel and secondary particulate fuel injected via that first burner, and injecting tertiary combustion gas into the lower zone of the circulating combustion chamber, through at least one tertiary combustion gas injector, whereby the tertiary combustion gas enables completion of the combustion of the gaseous fuel and the secondary particulate fuel, separating the mineral melt from the hot exhaust gases so that the hot exhaust gases pass through an outlet in the circulating combustion chamber and the mineral melt collects in the base zone. The invention also relates to apparatus suitable for use in the method.
Abstract:
The invention relates to a facade construction comprising first thermal barrier elements which are arranged on a supporting framework, in particular of an outer wall of a building, second thermal barrier elements which are arranged on the first thermal barrier elements and a retaining device which is arranged on the supporting framework and holds the first and second thermal barrier elements on the supporting framework. The facade device further comprises an intermediate layer in the form of a multiplicity of mounting plates, which intermediate layer is attached to and supported by the retaining device, wherein the second thermal barrier elements are arranged on the intermediate layer.
Abstract:
Insulating panel (10) having a top face (12) and a bottom face (14) opposite the top face, comprising a body (20) made of stone wool with a part of substantially uniform first density and a part of substantially uniform second density, different from the first density, at least one profiled groove (22) being formed in said insulating panel starting from the top face, the top face (12) being made of stone wool, the groove (22) being formed in the stone wool, the number of grooves being less than or equal to three for 60 cm of a dimension of said panel perpendicular to the direction of the grooves.