Abstract:
An apparatus and a method for controlling oilfield production to improve efficiency includes a remote sensing unit that is placed within a subsurface formation, an antenna structure for transmitting power and communicating signals to the remote sensing unit and for receiving communication signals from the remote sensor, a casing joint having nonconductive “windows” for allowing an internally located antenna to communicate with the remote sensing unit for those embodiments in which a wireline tool is being used to communicate with remote sensing unit, and a system for obtaining subsurface formation data and for producing the formation data to a central location for subsequent analysis. The remote sensing unit is a standalone sensor that is placed sufficiently far from the wellbore to reduce or eliminate effects that the wellbore might have on formation data samples taken by the remote sensing unit. The remote sensing unit is an active device with the capability of responding to control commands to determine certain subsurface formation characteristics such as pressure or temperature, and transmitting corresponding data values to a wellbore tool. Some embodiments of the remote sensing unit include a battery within its power supply. Other embodiments include a capacitor for storing charge. The embodiments that include the capacitor receive RF power that is converted to a DC signal for storing charge on the capacitor. The charged capacitor then acts as a power source to provide power to the internal circuitry of the remote sensing unit. When the charge is depleted to a specified point, the remote sensing unit stops transmitting to prompt the wellbore tool to transmit additional RF power to recharge the capacitor. This particular embodiment allows the remote sensing unit to be operable well after any charge of a battery would have been depleted rendering the remote sensing unit inoperable. An inventive method therefore includes providing RF power to the remote sensing unit to wake it up and to place it into an operational mode. The method further includes receiving modulated data values from the remote sensing unit that are then transmitted to the surface where operational decisions for the well may be made. In one embodiment of the invention, the subsurface formation data values are transmitted to a central location for analysis.
Abstract:
An apparatus and a method for controlling oilfield production to improve efficiency includes a remote sensing unit that is placed within a subsurface formation, an antenna structure for communicating with the remote sensing unit, a casing joint having nonconductive “windows” for allowing a internally located antenna to communicate with the remote sensing unit, and a system for obtaining subsurface formation data and for producing the formation data to a central location for subsequent analysis. The remote sensing unit is placed sufficiently far from the wellbore to reduce or eliminate effects that the wellbore might have on formation data samples taken by the remote sensing unit. The remote sensing unit is an active device with the capability of responding to control commands by determining certain subsurface formation characteristics such as pressure or temperature, and transmitting corresponding data values to a wellbore tool. The inventive system includes an antenna structure that is for delivering power and communication signals to the remote sensing unit. In one embodiment, the antenna structure is formed on an external surface of a wellbore casing. In another embodiment, the antenna structure is formed on a downhole tool such as a drilling collar or a cased hole wireline tool. For those embodiments in which the antenna structure is formed on a cased holed wireline tool, a casing joint is provided that includes nonconductive windows for allowing RF signals to be transmitted from within the casing to the remote sensing unit and from the remote sensing unit to the wireline tool. An inventive method therefore includes providing RF power through the inventive antenna system to the remote sensing unit to wake it up and to place it into an operational mode. The method further includes receiving modulated data values from the remote sensing unit through the antenna system that are then transmitted to the surface where operational decisions for the well may be made.
Abstract:
The present invention relates to a method and apparatus for establishing communication in a cased wellbore with a data sensor that has been remotely deployed, prior to the installation of casing in the wellbore, into a subsurface formation penetrated by the wellbore. Communication is established by installing an antenna in an opening in the casing wall. The present invention further relates to a method and apparatus for creating the casing wall opening, and then inserting the antenna in the opening in sealed relation with the casing wall. A data receiver is inserted into the cased wellbore for communicating with the data sensor via the antenna to receive formation data signals sensed and transmitted by the data sensor. Preferably, the location of the data sensor in the subsurface formation is identified prior to the installation of the antenna, so that the opening in the casing can be created proximate the data sensor. The antenna can then be installed in the casing wall opening for optimum communication with the data sensor. It is also preferred that the data sensor be equipped with means for transmitting a signature signal, permitting the location of the data sensor to be identified by sensing the signature signal. The location of the data sensor is identified by first determining the depth of the data sensor, and then determining the azimuth of the data sensor relative to the wellbore.
Abstract:
A method and apparatus for acquiring data representing formation parameters while drilling a wellbore is disclosed. A well is drilled with a drill string having a drill collar that is located above a drill bit. The drill collar includes a sonde section having transmitter/receiver electronics for transmitting a controlling signal having a frequency F and receiving data signals at a frequency 2F. The drill collar is adapted to embed one or more intelligent sensors into the formation laterally beyond the wall of the wellbore. The intelligent sensors have electronically dormant and active modes as commanded by the transmitter/receiver circuitry of the sonde and in the active mode have the capability for acquiring and storing selected formation data such as pressure, temperature, rock permeability, and the capability to transmit the stored data to the transmitter/receiver of the sonde for transmission thereby to surface equipment for processing and display to drilling personnel. As the well is being drilled the sonde electronics can be positioned in selected proximity with a remote sensor and, without tripping the drill string, formation data can be acquired and transmitted to the surface to enable drilling decisions based thereon.
Abstract:
A while-drilling tool comprising a motor, a transmission coupled to the motor, and a pump comprising a first piston disposed in a first chamber and a second piston disposed in a second chamber and coupled to the first piston. A planetary roller-screw is coupled between the pump and the transmission. A valve block is configured to fluidly communicate with the first and second pump chambers, a borehole in which the while-drilling tool is configured to be positioned, and a formation penetrated by the borehole.
Abstract:
An apparatus comprising a fluid communication device configured to extend from a drill string and establish fluid communication with a subterranean formation penetrated by a wellbore in which the drill string is positioned, wherein the drill string comprises a passage configured to conduct drilling mud and an opening extending through an outer surface thereof and into a cavity. A sample chamber is coupled within the cavity and is in selectable fluid communication with the formation via the fluid communication device.
Abstract:
An apparatus comprising a fluid communication device configured to extend from a drill string and establish fluid communication with a subterranean formation penetrated by a wellbore in which the drill string is positioned, wherein the drill string comprises a passage configured to conduct drilling mud and an opening extending through an outer surface thereof and into a cavity. A sample chamber is coupled within the cavity and is in selectable fluid communication with the formation via the fluid communication device.
Abstract:
A downhole formation fluid pumping and a sampling apparatus are disclosed that may form part of a formation evaluation while drilling tool or part of a tool pipe string. The operation of the pump is optimized based upon parameters generated from formation pressure test data as well as tool system data thereby ensuring optimum performance of the pump at higher speeds and with greater dependability. New pump designs for fluid sampling apparatuses for use in MWD systems are also disclosed.
Abstract:
An apparatus comprising a fluid communication device configured to extend from a drill string and establish fluid communication with a subterranean formation penetrated by a wellbore in which the drill string is positioned, wherein the drill string comprises a passage configured to conduct drilling mud and an opening extending through an outer surface thereof and into a cavity. A sample chamber is coupled within the cavity and is in selectable fluid communication with the formation via the fluid communication device.
Abstract:
An apparatus and method for harvesting energy in a wellbore is disclosed. In one embodiment, a harvester tool positioned in a wellbore for capturing energy in the wellbore is disclosed. The harvester tool includes a rotor comprising a magnet. The magnet is disposed eccentric to a center of the harvester tool. In addition, the rotor is rotatable around the center of the harvester tool. The harvester tool also includes a stator. Rotation of the rotor induces a voltage in the stator.