Abstract:
A forceps includes an end effector assembly having first and second jaw members movable relative to one another between a spaced-apart position, a first approximated position, and a second approximated position. One or both of the jaw members including a first stop member coupled thereto and disposed between the jaw members. The first stop member is longitudinally translatable along a surface of the at least one jaw member from a first position, wherein the first stop member inhibits approximation of the jaw members beyond the first approximated position, and a second position, wherein the first stop member inhibits approximation of the jaw members beyond the second approximated position.
Abstract:
A forceps includes an end effector assembly having first and second jaw members movable between a spaced-apart position and an approximated position for grasping tissue therebetween. A knife assembly having a cutting blade disposed at a distal end thereof is also provided. The knife assembly is translatable relative to the end effector assembly between a retracted position and an extended position, wherein the cutting blade extends between the jaw members to cut tissue grasped therebetween. The knife assembly includes a proximal component and a first distal component that includes the cutting blade. The proximal and first distal components are removably coupled to one another to facilitate replacement of the first distal component while the end effector assembly remains in a substantially assembled condition, i.e., without requiring substantial disassembly of the end effector assembly.
Abstract:
A surgical instrument includes an active electrode coupled to a source of electrosurgical energy. The active electrode includes a tissue-contacting surface on an exterior surface of the instrument such that the tissue-contacting surface of the active electrode may intimately engage tissue. A replacement electrode includes a tissue-contacting surface, and is located in an interior cavity of the instrument. A seal is formed between the active electrode and the interior cavity of the instrument such that the tissue-contacting-surface of the replacement electrode is isolated from contamination exposed to the exterior of the instrument. The active electrode is removable from the instrument to expose the tissue-contacting surface of the replacement electrode, and the replacement electrode is connectable to the source of electrosurgical energy when the active electrode is removed.
Abstract:
A method for manufacturing an end effector assembly for sealing tissue includes the initial step of providing first and second electrically conductive sealing plates. The method also includes the steps of: encasing at least one of the electrically conductive sealing plates in a substantially moldable insulative material; applying a load to the electrically conductive sealing plates; allowing the insulative material to deform to create a gap between the sealing plates between about 0.001 inches to about 0.010 inches; and allowing the insulative material to cure.
Abstract:
A method for manufacturing an end effector assembly for sealing tissue includes the initial step of providing a pair of first and second jaw members each including an inwardly facing electrically conductive sealing surface. The method also includes the steps of: coating the inwardly facing electrically conductive sealing surface of one or both jaw members with an insulative material, the coating having a thickness within the range of about 0.001 inches to about 0.010 inches; allowing the insulative material to cure onto the inwardly facing electrically conductive sealing surface; removing a portion of the insulative material from the inwardly facing electrically conductive sealing surface to form a series of stop members arranged thereacross; and assembling the pair of first and second jaw members about a pivot such that the two inwardly facing electrically conductive sealing surfaces are substantially opposed to each other in pivotal relation relative to one another.
Abstract:
A surgical instrument is provided. The surgical instrument includes an end effector assembly including first and second jaw members moveable relative to one another between a first, spaced-apart position and a second position proximate tissue, wherein, in the second position, the jaw members cooperate to define a cavity that is configured to receive tissue between the jaw members and a resilient electrically conductive sealing surface operably coupled to at least one jaw member, the resilient electrically conductive sealing surface selectively positionable from a first unflexed position to a second flexed position.
Abstract:
A forceps is provided and includes a housing having a shaft. An end effector assembly operatively connects to a distal end of the shaft and includes a pair of first and second jaw members. One or both of the first and second jaw members is movable relative to the other jaw member from a clamping position to an open position. A resilient member operably couples to at least one of the first and second jaw members. The resilient member is configured to bias the first and second jaw members in the clamping position and provide a closure force on tissue disposed therebetween.
Abstract:
A bipolar electrosurgical instrument includes a housing and an elongated shaft. An end effector is coupled to a distal end of the elongated shaft. A handle assembly includes a movable handle movable relative to a fixed handle for effecting movement of the jaw members from a first position to a second position. Each jaw member is configured to connect to a source of electrosurgical energy. A switch is disposed on the fixed handle and configured to be depressed between a first position and at least one subsequent position upon biasing engagement with a switch engaging surface disposed on the movable handle. The first position of the switch causes the relay of information to the user corresponding to a desired pressure on tissue grasped between the jaw members and the at least one subsequent position is configured to activate the source of electrosurgical energy.
Abstract:
A bipolar electrosurgical instrument includes a housing and an elongated shaft. An end effector is coupled to a distal end of the elongated shaft. A handle assembly includes a movable handle movable relative to a fixed handle for effecting movement of the jaw members from a first position to a second position. Each jaw member is configured to connect to a source of electrosurgical energy. A switch is disposed on the fixed handle and configured to be depressed between a first position and at least one subsequent position upon biasing engagement with a switch engaging surface disposed on the movable handle. The first position of the switch causes the relay of information to the user corresponding to a desired pressure on tissue grasped between the jaw members and the at least one subsequent position is configured to activate the source of electrosurgical energy.