Abstract:
Methods and systems for an armor system are provided. The system includes a first face sheet and a shaped preform extending from the first face sheet. The preform includes a first edge proximate the first face sheet, a sidewall extending from the first edge to a flange extending substantially perpendicularly from the sidewall. The preform circumscribes an area of the first face sheet. The system also includes a tile of armor material complementarily-shaped to fit within the area circumscribed by the preform. The tile is positioned within the preform such that at least a portion of the tile is between the first face sheet and the flange. The system includes a second face sheet covering the preform and the tile on a side opposite from the first face sheet.
Abstract:
A method for remote rework imaging a part for an inconsistency is provided. The part is scanned with a nondestructive inspection device. An image of a part inconsistency is communicated from the nondestructive inspection device to a programmable device. The image of the part inconsistency is viewed with the programmable device. The image of the part inconsistency is edited with the programmable device using an input device in communication with the programmable device. The edited image is communicated from the programmable device to a visible light projector. The edited image is projected onto the part inconsistency using the visible light projector.
Abstract:
Systems and methods for in-process vision inspection for automated machines are disclosed. In one embodiment, a head assembly includes a tool moveable over a workpiece and adapted to perform a manufacturing operation on the workpiece, and an inspection unit operatively positioned proximate the tool and moveable with the tool relative to the workpiece. The inspection unit is adapted to perform a vision inspection of a portion of the workpiece simultaneously with the performance of the manufacturing operation on the workpiece. In a particular embodiment, the inspection unit includes a camera adapted to monitor an area including the portion of the workpiece upon which the tool has performed the manufacturing operation, and a processor operatively coupled to the camera and adapted to receive an image from the camera and to analyze the image to determine a presence of a defect within the portion of the workpiece.
Abstract:
A system and method for remote rework imaging a part for an inconsistency is provided. The part is scanned with a nondestructive inspection device. An image of a part inconsistency is communicated from the nondestructive inspection device to a programmable device. The image of the part inconsistency is viewed with the programmable device. The image of the part inconsistency is edited with the programmable device using an input device in communication with the programmable device. The edited image is communicated from the programmable device to a visible light projector. The edited image is projected onto the part inconsistency using the visible light projector.
Abstract:
Methods and systems for an armor system are provided. The system includes a first face sheet and a shaped preform extending from the first face sheet. The preform includes a first edge proximate the first face sheet, a sidewall extending from the first edge to a flange extending substantially perpendicularly from the sidewall. The preform circumscribes an area of the first face sheet. The system also includes a tile of armor material complementarily-shaped to fit within the area circumscribed by the preform. The tile is positioned within the preform such that at least a portion of the tile is between the first face sheet and the flange. The system includes a second face sheet covering the preform and the tile on a side opposite from the first face sheet.
Abstract:
Method and system for determining cumulative foreign object characteristics during fabrication of a composite structure. Images of sequential segments of a composite structure may be recorded during placement of the composite structure. The recorded images may be analyzed for detecting foreign objects on the composite structure. Cumulative foreign object characteristics of the foreign objects detected on the composite structure may be determined, and the cumulative foreign object characteristics may be provided to a user.
Abstract:
The invention relates to pseudo porosity standards, and methods for their manufacture and use, which substantially mimic the effect porosity has on ultrasonic sound as it passes through a composite laminate, such as a metallic interleaved composite laminate. An ultrasonic inspection reference standard for composite materials having porosity may include a member having at least one thickness, at least one metallic shim, and at least one mesh. A plurality of metallic shims and meshes may be disposed in alternating layers within the member. The member may be manufactured from a fiber-free polymer resin using a stereo lithography process. Use of the mesh may produce a standard which transmits ultrasonic energy, with the mesh scattering and attenuating the energy. Use of the metallic shim may aide in modeling a metallic laminate. The manufactured reference standard may replace more costly porous, fiber-reinforced, composite reference standards, such as porous metallic interleaved composite laminate reference standards, in the aircraft industry and in other non-aircraft applications.
Abstract:
The invention relates to pseudo porosity standards, and methods for their manufacture and use, which may substantially mimic the effect porosity has on ultrasonic sound as it passes through a composite laminate. An ultrasonic inspection reference standard for composite materials having porosity may include a member having at least one thickness. The member may be defined by at least one hollow, non-spherical shaft. The member may be manufactured from a fiber-free polymer resin using a stereo lithography process. The non-spherical shaft may scatter and attenuate ultrasonic energy. The reference standard may replace more costly, porous, fiber-reinforced, composite reference standards in the aircraft industry and in other non-aircraft applications.
Abstract:
The embodiments of the disclosure relate to a method of displaying an image of an inconsistency on a part. The part may be scanned. An inconsistency on the part may be located. An image of the inconsistency may be displayed on the part. In other embodiments, parts are provided which had images of the parts' inconsistencies displayed on one or more surfaces of the parts.
Abstract:
A system and method for remote rework imaging a part for an inconsistency is provided. The part is scanned with a nondestructive inspection device. An image of a part inconsistency is communicated from the nondestructive inspection device to a programmable device. The image of the part inconsistency is viewed with the programmable device. The image of the part inconsistency is edited with the programmable device using an input device in communication with the programmable device. The edited image is communicated from the programmable device to a visible light projector. The edited image is projected onto the part inconsistency using the visible light projector.