Abstract:
The present disclosure relates to a metamaterial for converging electromagnetic waves, which comprises a plurality of metamaterial sheet layers stacked integrally in an x direction. Each of the metamaterial sheet layers comprises a plurality of metamaterial units. Each of the metamaterial units has an identical substrate unit and a man-made microstructure attached on the substrate unit. The metamaterial units of each row have a same refractive index. Refractive indices of the metamaterial units of each column satisfy particular relationships. The man-made microstructure is a non-90° rotationally symmetrical structure, and an extraordinary optical axis of a refractive index ellipsoid thereof is non-perpendicular to and unparallel to the y direction. The thickness of the metamaterial can be considerably decreased while the function of converging electromagnetic waves is achieved in the present disclosure. This is favorable for making the metamaterial product miniaturized and lightweight.
Abstract:
The present disclosure discloses an antenna device, which comprises an array antenna and a power divider. The array antenna comprises a plurality of antenna units, and each of the antenna units comprises a conductive sheet engraved with a groove topology pattern, conductive feeding points and a feeder line. The power divider is adapted to divide a baseband signal into a plurality of weighted signals and then transmit the weighted signals to the antenna units arranged in an array via the conductive feeding points respectively. By arraying the antenna units and using the beam forming method, the directionality of the antenna can be designed as needed through phase superposition between the antenna units; and then, a reflective metal plate is provided on the back side of the antenna so that a back lobe of the antenna is compressed. In this way, the miniaturized antenna array can obtain a high directionality.
Abstract:
The present disclosure discloses an impedance matching component disposed between a first medium and a second medium, which is formed by stacking a plurality of homogeneous metamaterial sheet layers in a direction perpendicular to surfaces thereof. Each of the metamaterial sheet layers comprises a substrate and a plurality of man-made microstructures attached thereon. A first and last metamaterial sheet layers have impedances identical to those of the first and second media respectively. The man-made microstructures attached on the first metamaterial sheet layer have a first pattern, the man-made microstructures attached on the last metamaterial sheet layer have a second pattern, and the man-made microstructures attached on intermediate ones of the metamaterial sheet layers have patterns that are combinations of the first and second patterns, with the first pattern becoming smaller continuously and the second pattern becoming larger continuously in the stacking direction of the metamaterial sheet layers.
Abstract:
An artificial microstructure made of conductive wires includes a split resonant ring with a split, and two curves. The two curves respectively start from first end and the second end of the split resonant ring and curvedly extend inside the split resonant ring, where the two curves do not intersect with each other, and do not intersect with the split resonant ring.
Abstract:
Disclosed is a Cassegrain microwave antenna, which comprises a radiation source, a first metamaterial panel used for radiating an electromagnetic wave emitted by the radiation source, and a second metamaterial panel having an electromagnetic wave convergence feature and used for converting into plane wave the electromagnetic wave radiated by the first metamaterial panel. Employment of the principle of metamaterial for manufacturing the antenna allows the antenna to break away from restrictions of conventional concave lens shape, convex lens shape, and parabolic shape, thereby allowing the shape of the Cassegrain microwave antenna to be panel-shaped or any shape as desired, while allowing for reduced thickness, reduced size, and facilitated processing and manufacturing, thus providing beneficial effects of reduced costs and improved gain effect.
Abstract:
The present invention discloses a Cassegrain satellite television antenna comprising a metamaterial plate. The metamaterial plate comprises a core layer. The core layer comprises core sublayers. Each core sublayer comprises a circular area and a plurality of annuli distributed around the circular area. According to the Cassegrain satellite television antenna of the present invention, the traditional parabolic antenna is replaced with a sheet-like metamaterial plate which is easier to process and has a lower cost. In addition, the present invention also provides a satellite television receiving system equipped with the above-mentioned Cassegrain satellite television antenna.
Abstract:
The present invention relates to an antenna based on a metamaterial and a method for generating an operating wavelength of a metamaterial panel. The antenna comprises a radiation source, and a metamaterial panel capable of converging an electromagnetic wave and operating at a first wavelength. The metamaterial panel is adapted to convert the electromagnetic wave radiated from the radiation source into a plane wave and to enable the antenna to simultaneously operate at a second wavelength and a third wavelength which are smaller than the first wavelength and are different multiples of the first wavelength. The present invention further provides a method for generating an operating wavelength of a metamaterial panel for use in the aforesaid antenna. These improve the convergence performance and reduce the volume and size of the antenna.
Abstract:
The present invention relates to a man-made composite material. The man-made composite material is divided into a plurality of regions. A plane electromagnetic wave is incident on a first surface and exits in the form of a spherical wave from a second surface of the man-made composite material opposite to the first surface. Reverse extensions of the exiting electromagnetic wave intersect with each other at a virtual focus of the man-made composite material. A line connecting the virtual focus to a point on the top surface of the ith region and a line perpendicular to the man-made composite material form an angle θ therebetween, which uniquely corresponds to a curved surface in the ith region. A set formed by points on the top surface of the ith region that have the same angle θ forms a boundary of the curved surface to which the angle θ uniquely corresponds.
Abstract:
The present invention provides an artificial electromagnetic material, comprising at least one material sheet layer; wherein each material sheet layer is provided with a first substrate and a second substrate which are oppositely arranged; and a plurality of artificial microstructures are attached on a surface, facing the second substrate, of the first substrate. The first substrate and the second substrate on both sides of the artificial microstructure are in such tight contact therewith that the number of electric field lines passing through the substrates is increased and the equivalent permittivity of the artificial electromagnetic material is effectively improved.
Abstract:
A metamaterial for separating an electromagnetic wave beam is disclosed. Two kinds of man-made microstructures are attached on a substrate of the metamaterial. The first man-made microstructures each have a principal optical axis parallel to a first electric field direction, and the second man-made microstructures each have a principal optical axis parallel to a second electric field direction. The metamaterial comprises a first region and a second region. The first man-made microstructures in the first region have the largest geometric size and the first man-made microstructures in other regions increase in geometric size continuously in a direction towards the first region; and the second man-made microstructures in the second region have the largest geometric size and the second man-made microstructures in other regions increase in geometric size continuously in a direction towards the second region.