Abstract:
Disclosed is a Cassegrain microwave antenna, which comprises a radiation source, a first metamaterial panel used for radiating an electromagnetic wave emitted by the radiation source, and a second metamaterial panel having an electromagnetic wave convergence feature and used for converting into plane wave the electromagnetic wave radiated by the first metamaterial panel. Employment of the principle of metamaterial for manufacturing the antenna allows the antenna to break away from restrictions of conventional concave lens shape, convex lens shape, and parabolic shape, thereby allowing the shape of the Cassegrain microwave antenna to be panel-shaped or any shape as desired, while allowing for reduced thickness, reduced size, and facilitated processing and manufacturing, thus providing beneficial effects of reduced costs and improved gain effect.
Abstract:
A front feed microwave antenna, which comprises a radiation source, a first metamaterial panel used for radiating an electromagnetic wave emitted by the radiation source, a second metamaterial panel, and a reflective panel affixed to the back of the first metamaterial panel. The electromagnetic wave is emitted via the first metamaterial panel, refracted by entering the second metamaterial panel, reflected by the reflective panel, and finally re-refracted by reentering the second metamaterial panel, then finally parallel-emitted. Employment of the principle of metamaterial for manufacturing the antenna allows the antenna to break away from restrictions of conventional concave lens shape, convex lens shape, and parabolic shape, thereby allowing the shape of the antenna to be panel-shaped or any shape as desired, while allowing for reduced thickness, reduced size, facilitated processing and manufacturing, reduced costs, and improved gain effect.
Abstract:
Disclosed is a Cassegrain microwave antenna, which comprises a radiation source, a first metamaterial panel used for radiating an electromagnetic wave emitted by the radiation source, and a second metamaterial panel having an electromagnetic wave convergence feature and used for converting into plane wave the electromagnetic wave radiated by the first metamaterial panel. Employment of the principle of metamaterial for manufacturing the antenna allows the antenna to break away from restrictions of conventional concave lens shape, convex lens shape, and parabolic shape, thereby allowing the shape of the Cassegrain microwave antenna to be panel-shaped or any shape as desired, while allowing for reduced thickness, reduced size, and facilitated processing and manufacturing, thus providing beneficial effects of reduced costs and improved gain effect.
Abstract:
A front feed microwave antenna, which comprises a radiation source, a first metamaterial panel used for radiating an electromagnetic wave emitted by the radiation source, a second metamaterial panel, and a reflective panel affixed to the back of the first metamaterial panel. The electromagnetic wave is emitted via the first metamaterial panel, refracted by entering the second metamaterial panel, reflected by the reflective panel, and finally re-refracted by reentering the second metamaterial panel, then finally parallel-emitted.
Abstract:
An optical alignment system used in the manufacture of semiconductor integrated circuits determines and adjusts the alignment between features which have been formed on a semiconductor wafer and features on a mask which is being projected onto the semiconductor wafer. Light which illuminates the semiconductor wafer is scattered and diffracted into a dark-field detector system. This results in the generation of electrical signals which are used to position the mask relative to the semiconductor wafer. The use of polarized light in the present system results in an increase in the magnitude of the desired signals and a decrease in the magnitude of the spurious signals. To improve the quality of the signals, the angle of polarization of the light is adjusted to a specific relationship with respect to the geometry of the alignment marks on the semiconductor wafer.
Abstract:
A method of fabricating an optical component includes forming a mask on an optical component precursor. The method also includes etching through at least a portion of the mask so as to etch an underlying medium concurrently with remaining mask and transfer a feature of an upper surface of the mask onto an upper surface of the underlying medium. The etch can be configured such that a ratio of the underlying medium etch rate to the mask etch rate is less than about 1.5:1. In some instances, the underlying medium is silicon and the mask is a photoresist.
Abstract:
An add/drop node is disclosed. The add/drop node includes a first filter configured to receive a light beam having a plurality of channels. The first filter is also configured to direct channels having wavelengths falling within a plurality of first wavelength bands to a transition waveguide. The add/drop node also includes a second filter configured to receive the channels directed to the transition waveguide. The second filter is configured to direct channels having wavelengths falling within a plurality of second wavelength bands to a drop waveguide. The first filter and/or the second filter can be tunable.
Abstract:
An optical component is disclosed. The optical component includes a tap waveguide and a primary waveguide positioned on a base. The tap waveguide is configured to receive a portion of a light signal traveling along the primary waveguide. The portion of the light signal received by the tap waveguide is the tapped portion of the light signal. A direction changing region is configured to receive the tapped portion of the light signal from the tap waveguide and to direct the tapped portion of the light signal travels away from the base. A light sensor is configured to receive the tapped portion of the light signal from the direction changing region.
Abstract:
In an overlay measurement mark comprising an inner box and an outer box located at a predetermined area on a mask through which patterns are formed on a semiconductor device, the improvement of an overlay mark that extends the overlay measurement range comprising: in-focused marks means printed at an optimal or ideal focal plane level from an illumination source, and de-focused marks means located at a different focus level from the optimal focal plane to provide image placement shift of the de-focused marks larger than that of the in-focused marks means to enable measurement of the shift of de-focused marks that are not attributable to a mechanical alignment error to be determined with greater accuracy.
Abstract:
A method of preparing an optical component for coupling with an optical fiber is disclosed. The method includes determining a thickness of a buffer layer formed on the optical component. The method also includes forming an anti reflective coating adjacent to the buffer layer. The anti reflective coating is formed to a thickness selected in response to the determined buffer layer thickness.