Abstract:
An impact filter suitable for a kitchen exhaust hood is provided with a grease trap to capture grease particles and channel the particles away. The trap can be of different configurations. The filter can be used in various processes to clean air streams, such as filtering processes for removing grease and other cooking exhaust particles and other processes for removing grease particles.
Abstract:
A semiconductor structure and a method for fabricating the semiconductor structure provide a field effect device structure. The field effect device structure includes a gate electrode located over a channel region within a semiconductor substrate that separates a plurality of source and drain regions within the semiconductor substrate. The channel region includes a surface layer that comprises a carbon doped semiconductor material. The source and drain regions include a surface layer that comprises a semiconductor material that is not carbon doped. The particular selection of material for the channel region and source and drain regions provide for inhibited dopant diffusion and enhanced mechanical stress within the channel region, and thus enhanced performance of the field effect device.
Abstract:
A grease filter unit includes a frame assembly and a filter material. The frame assembly includes a front frame member and a back frame member, with the filter material held between the two frame members.
Abstract:
Controlling an exhaust hood system having multiple hood sections each with an exhaust output having an associated damper, each exhaust output feeding to a common downstream fan, where damper position and fan speed control an exhaust flow rate through each hood section, involves monitoring at least one condition of each hood section and, based upon the monitoring, establishing a target flow rate for each hood section; based upon a sum of the target flow rates, establishing a fan speed; and monitoring an actual flow rate through each hood section and responsively controlling damper position to achieve the target flow rate for the hood section. Adjusting fan speed and damper position until damper position for at least one hood section achieves a predetermined open position, while at the same time each hood section satisfies its associated target flow rate, can reduce energy costs associated with system operation.
Abstract:
Controlling an exhaust hood system having multiple hood sections each with an exhaust output having an associated damper, each exhaust output feeding to a common downstream fan, where damper position and fan speed control an exhaust flow rate through each hood section, involves monitoring at least one condition of each hood section and, based upon the monitoring, establishing a target flow rate for each hood section; based upon a sum of the target flow rates, establishing a fan speed; and monitoring an actual flow rate through each hood section and responsively controlling damper position to achieve the target flow rate for the hood section. Adjusting fan speed and damper position until damper position for at least one hood section achieves a predetermined open position, while at the same time each hood section satisfies its associated target flow rate, can reduce energy costs associated with system operation.
Abstract:
Controlling an exhaust hood system having multiple hood sections each with an exhaust output having an associated damper, each exhaust output feeding to a common downstream fan, where damper position and fan speed control an exhaust flow rate through each hood section, involves monitoring at least one condition of each hood section and, based upon the monitoring, establishing a target flow rate for each hood section; based upon a sum of the target flow rates, establishing a fan speed; and monitoring an actual flow rate through each hood section and responsively controlling damper position to achieve the target flow rate for the hood section. Adjusting fan speed and damper position until damper position for at least one hood section achieves a predetermined open position, while at the same time each hood section satisfies its associated target flow rate, can reduce energy costs associated with system operation.
Abstract:
A ventilator assembly for removing contaminants in cooking exhaust includes a hood portion having a hood plenum, and a duct portion in fluid communication with the hood portion, where the duct portion has an inside cross-sectional area that is less than half of an average inside cross-sectional area of the hoodplenum. A fan is in fluid communication with the duct portion for drawing the cooking exhaust through the hood portion to the duct portion. At least one ultra-violet lamp is disposed in the duct portion, where the ultra-violet radiation from the lamp reacts with the cooking exhaust to generate ozone for oxidizing contaminants in the cooking exhaust.
Abstract:
An impact filter suitable for a kitchen exhaust hood is provided with a grease trap to capture grease particles and channel the particles away. The trap can be of different configurations. The filter can be used in various system layouts.
Abstract:
An electrostatic precipitator wash system includes a plurality of fluidic oscillator nozzles through which wash solution is directed at the electrostatic cell of the electrostatic precipitator. The nozzles are provided in a manifold rotatable about an axis of the manifold. The manifold is rotated through an arc of about 90° while emitting wash solution toward the cell in an oscillating stream of drops.