Abstract:
An apparatus, computer software, and method for data detection in channels suffering from intersymbol interference comprising receiving a signal representative of a binary digit of data, computing a reliability score for that binary digit of data via windowed Chase equalization, and based on the reliability score, causing a signal to be output that the binary digit is a zero or a one.
Abstract:
A method of operating a terminal in a radio access network may include receiving a transmission of first and second data blocks over respective first and second multiple-input-multiple-output (MIMO) layers during a transmission time interval (TTI). Respective first and second demodulated codewords may be generated corresponding to the transmission of the first and second data blocks, and the first and second demodulated codewords may be decoded. Responsive to failure decoding the first demodulated codeword and success decoding the second demodulated codeword, a negative acknowledgement may be transmitted indicating failure receiving the first and second data blocks. Related terminals are also discussed.
Abstract:
To report feedback information regarding a wireless channel, a mobile station determines whether a predefined condition is satisfied. In response to determining that the predefined condition is satisfied, feedback information regarding an individual one of plural subbands of the wireless channel is included in a first report to be sent to a base station. In response to determining that the predefined condition is not satisfied, aggregate feedback information regarding the plural subbands is included in a second report to be sent to the base station.
Abstract:
CSI may be provided for a first device communicating with a second device over a MIMO channel using codewords of a precoding codebook. The first and/or second devices support communications over the MIMO channel using a plurality of transmission layers, and the codewords of the precoding codebook are divided into transmission layer groups. Each transmission layer group is provided for a respective one of the transmission layers. At least first and second pluralities of codewords of the precoding codebook are defined. Each of the first and second pluralities includes codewords from each of the transmission layer groups. During a first TTI, respective performance metrics for the first plurality of codewords are determined based on transmissions received at the first device. During a second TTI, respective performance metrics for the second plurality of codewords are determined based on transmissions received at the first device.
Abstract:
A MIMO (Multiple-Input-Multiple-Output) receiver may receive a plurality of MIMO transport blocks transmitted from a plurality of MIMO transmission antennas over a same carrier frequency. More particularly, a MIMO signal including the plurality of MIMO transport blocks may be received through a plurality of reception antennas, and respective measures of signal quality for each of the MIMO transport blocks may be computed. A MIMO transport block may be selected from the plurality of MIMO transport blocks based on the measures of signal quality, and the selected MIMO transport block may be decoded. Responsive to failure decoding the selected MIMO transport block, processing of all MIMO transport blocks received in the MIMO signal may be terminated. Related communication devices are also discussed.
Abstract:
CSI may be provided for a first device communicating with a second device over a MIMO channel using codewords of a precoding codebook. The first and/or second devices support communications over the MIMO channel using a plurality of transmission layers, and the codewords of the precoding codebook are divided into transmission layer groups. Each transmission layer group is provided for a respective one of the transmission layers. At least first and second pluralities of codewords of the precoding codebook are defined. Each of the first and second pluralities includes codewords from each of the transmission layer groups. During a first TTI, respective performance metrics for the first plurality of codewords are determined based on transmissions received at the first device. During a second TTI, respective performance metrics for the second plurality of codewords are determined based on transmissions received at the first device.
Abstract:
A system and method to provide intelligent scheduling of network resources when a user equipment (UE) is operating in a Frequency Division Duplex (FDD) wireless network with duty cycle limitation. Intelligent scheduling is accomplished in two stages—a training stage, and a scheduling stage. In the training stage, a training module in the eNodeB senses the Transmission Time Interval (TTI) pattern when the UE is “awake” (i.e., when the UE is transmitting power under a P % duty cycle (P
Abstract:
A method in a radio receiver arrangement for receiving data blocks of radio signalling. The method comprises receiving a plurality of data blocks over a radio interface from a transmitting side. The method also comprises applying a single hybrid automatic repeat request (HARQ) process to the plurality of data blocks, whereby it is determined that at least one of the plurality of data blocks has been received ok and that at least one of the plurality of data blocks has not been received ok. The method also comprises generating a negative acknowledgement (NAK) for the plurality of data blocks in response to the at least one of the plurality of data blocks having not been received ok. The method also comprises outputting, from the receiver arrangement, at least one symbol obtained from the at least one of the plurality of data blocks which has been received ok.
Abstract:
A system and method for configuring a variable Channel Quality Information (CQI) reporting period based on a User Equipment's (UE) Doppler frequency or speed. Mobile users are divided into three Doppler frequency regions based on their speed—for example, low, medium, and high Doppler users—and are assigned the CQI, reporting periods accordingly by the base station. The users in the low and high Doppler regions (i.e., UEs with low and high speeds) receive a high value for the CQI reporting period, whereas—the users in the medium Doppler region (i.e., UEs with medium speeds) receive a low value for the CQI reporting period. The UE speed-specific CQI reporting period improves the uplink capacity by adaptively controlling a UE's CQI-related uplink transmissions, without compromising on the downlink capacity/throughput.
Abstract:
A method of operating a wireless terminal communicating with a base station over a wireless channel may include determining whether the wireless terminal is in an edge area or an interior area of coverage of the base station. Responsive to determining that the wireless terminal is in an edge area of coverage of the base station, a transmit diversity communications rank indicator may be selected to select diversity communications over the wireless channel between the wireless terminal and the base station. Related wireless terminals are also discussed.