Abstract:
A method for verifying coverage area by measuring the signal strength throughout the area, estimating the radius of the area based on the measurements, measuring the signal strength at the estimated radial distance, and determining if there is a sufficient proportion of signals at the estimated radial distance with a strength which exceeds a threshold.
Abstract:
A system and method to provide intelligent scheduling of network resources when a user equipment (UE) is operating in a Frequency Division Duplex (FDD) wireless network with duty cycle limitation. Intelligent scheduling is accomplished in two stages—a training stage, and a scheduling stage. In the training stage, a training module in the eNodeB senses the Transmission Time Interval (TTI) pattern when the UE is “awake” (i.e., when the UE is transmitting power under a P % duty cycle (P
Abstract:
A system and method of identifying the source of uplink and downlink interference in a disturbed cell of a wireless telecommunications network. Initially, call events occurring in offending cells are recorded. In conjunction, the disturbance events occurring in the disturbed cell of the telecommunications network are recorded. The recorded call events with recorded disturbance events are then correlated. A distribution of disturbed and offending cells within the telecommunications network as a function of time is computed to obtain a statistical correlation of call events in offending cells and subsequent disturbances resulting in the disturbed cell to identify the possible source of disturbances that caused the sealing of the sealed device with in the disturbed cell.
Abstract:
A system and method to provide intelligent scheduling of network resources when a user equipment (UE) is operating in a Frequency Division Duplex (FDD) wireless network with duty cycle limitation. Intelligent scheduling is accomplished in two stages—a training stage, and a scheduling stage. In the training stage, a training module in the eNodeB senses the Transmission Time Interval (TTI) pattern when the UE is “awake” (i.e., when the UE is transmitting power under a P % duty cycle (P
Abstract:
A system and method of assigning frequencies from a reuse group according to service type and subscriber location in a wireless communications network utilizing multiple reuse frequency groups for the assignment of transmission channels. Initially, a mobile station requests a transmission channel. A network element then receives the request and determines the data rate requirements of the mobile station for the level of service provided by the network to the mobile station. Concurrently, the signal strength from the mobile station to a serving base station subsystem is measured. The network element then assigns a frequency to the mobile station which belongs to a reuse frequency group that supports the data rate requirements at the signal strength measured.
Abstract:
A method and system of optimizing the signal strength and interference characteristics of a wireless telecommunications network which includes a plurality of cells with at least one of the cells being disturbed (the “disturbed cell”) by events occurring in one or more offending cells. The method comprises the step of computing a distribution of disturbance events in the disturbed cell as a function of disturbances created by the offending cells. The distribution of disturbance events is then utilized to predict changes in coverage of the offending cells as changes in the carrier-to-interference (C/I) ratio of the disturbed cell are made. Such predictions then lead to modifying the power levels of wireless components in the network to reach acceptable tradeoffs between interference and coverage. Thus, the tradeoff is a function of the predicted changes in C/I and acceptable coverage and interference thresholds for the network.
Abstract:
A method and system for determining sources of downlink interference in a telecommunications network having offending cells and disturbed disposed therein. Initially, mobile traffic events in offending cells within the telecommunications network are identified. Disturbance events in disturbed cells within the telecommunications network are also determined. The identified mobile traffic events are then correlated with the identified disturbance events in order to detect possible sources of disturbance within the telecommunications network. A disturbance distribution for each disturbed cell within the telecommunications network is thereafter computed, when all identified mobile traffic events are correlated with the all identified disturbance events, thereby enabling network engineers to optimize the telecommunications network by minimizing downlink interference. The method and system are thus based on measurements and not predictions, so that the measurements take into account the behavior of all mobiles within the telecommunications network rather than a particular mobile event.