High resolution encoding and transmission of traffic information

    公开(公告)号:US10783777B2

    公开(公告)日:2020-09-22

    申请号:US14852608

    申请日:2015-09-13

    Abstract: Systems and methods are provided for increasing the geospatial resolution of traffic information by dividing known location intervals into a fixed number of sub-segments not tied to any one map providers format, efficient coding of the traffic information, and distribution of the traffic information to end-user consuming devices over one or more of a satellite based broadcast transport medium and a data communications network. Exemplary embodiments of the present invention detail a nationwide traffic service which can be encoded and distributed through a single broadcast service, such as, for example, an SDARS service, or a broadcast over a data network. Exemplary embodiments include aggregating the traffic data from segments of multiple location intervals, into predefined and predetermined flow vectors, and sending the flow vectors within a data stream to users. Confidence levels obtained from raw traffic data can both (I) be disclosed to drivers/users to supplement a very low signal (or no signal) speed and congestion report, and (ii) can also be used in various system algorithms that decide what local anomalies or aberrations to filter out as noise, or to disclose as accurate information and thus more granularly depict the roadway in question (and use additional bits to do so) as an actual highly localized traffic condition.

    Maintaining Repeater Accuracy for Satellite Signal Delivery Systems

    公开(公告)号:US20200052875A1

    公开(公告)日:2020-02-13

    申请号:US16521880

    申请日:2019-07-25

    Abstract: Systems and methods for maintaining synchronization of repeater networks with Global Positioning System (GPS) signals using phase locked loops (PLLs) and based on generation of predicted control words for controlling local oscillator frequencies is described. The predicted control words can be generated based on performing a linear fit of control words generated over a predetermined duration of time. Phase locked loops with additional false GPS pulse identification and GPS signal loss compensation circuitry can enforce a false pulse count threshold and/or an error threshold. The additional circuitry and prediction of control words can overcome errors in GPS receiver outputs and maintain accuracy of signal timings across single frequency networks using inexpensive local oscillators.

    Server side crossfading for progressive download media

    公开(公告)号:US10366725B2

    公开(公告)日:2019-07-30

    申请号:US15706820

    申请日:2017-09-18

    Abstract: Systems and methods are provided to implement and facilitate cross-fading, interstitials and other effects/processing of two or more media elements in a personalized media delivery service. Effects or crossfade processing can occur on the broadcast, publisher or server-side, but can still be personalized to a specific user, in a manner that minimizes processing on the downstream side or client device. The cross-fade can be implemented after decoding, processing, re-encoding, and rechunking the relevant chunks of each component clip. Alternatively, the cross-fade or other effect can be implemented on the relevant chunks in the compressed domain, thus obviating any loss of quality by re-encoding. A large scale personalized content delivery service can limit the processing to essentially the first and last chunks of any file, there being no need to process the full clip.

    Satellite receiver option for certificate distribution

    公开(公告)号:US10348508B2

    公开(公告)日:2019-07-09

    申请号:US15510893

    申请日:2015-09-15

    Abstract: In exemplary embodiments of the present invention, a V2V unit in a vehicle (OBE) can, for example, store a plurality of years of encrypted certificates. The certificates can, for example, be programmed at an OBE factory using a secure server, and access to all certificates can be locked until an unlock key is computed for a given window (certificate validity period). An in-vehicle satellite receiver can then receive, over, for example, a dedicated satellite control channel, unlock codes for a current time window and a next time window, and provide them to the V2V device. Using those unlock codes, the V2V device (OBE) can compute an unlock key from an unlock code provided by the satellite receiver. In this manner an in-vehicle device may be directly messaged, but only to unlock one or more certificates at a controlled time. Without the received lock codes, the stored certificates are not useable.

    Systems and methods for transmitting conditional access information

    公开(公告)号:US10237739B2

    公开(公告)日:2019-03-19

    申请号:US15013006

    申请日:2016-02-02

    Abstract: Various multiple methods of data transport, and combinations thereof, may be used to initialize or update conditional access information on various devices. In an integrated device having both a broadcast receiver, such as an SDARS receiver, and a two-way communications transceiver, such as an LTE, 3G, 4G or 5G modem, or the like, conditional access information for the broadcast receiver may be sent to the transceiver, and then passed to the broadcast receiver, or vice versa. Additionally, for example, the broadcast receiver may be sent, over the broadcast communications channel, a “wake-up” message for the two-way transceiver, which message may then be passed to the two-way transceiver, so as to make it ready to receive conditional access information over the two-way communications channel, or vice versa. Moreover, because of the presence of a two-way communications path, various acknowledgements of conditional access status updates received and processed by the broadcast receiver may be sent—thus realizing a significant improvement over the current practice of sending multiple periodic messages over the broadcast channel, to insure (but never have confirmation of) receipt.

    VEHICLE MESSAGE ADDRESSING
    17.
    发明申请

    公开(公告)号:US20190057581A1

    公开(公告)日:2019-02-21

    申请号:US16004834

    申请日:2018-06-11

    Abstract: A vehicle messaging method (600) and system (100) can include any number of data sources (101-103), an interface (104) that formats messages and addresses from the data sources, and a corresponding number of messaging servers (111-113) that receive targeted messages intended for a predetermined subset of subscribers associated with a vehicle identification number (VIN). Each messaging server can include a corresponding controller (121-123) programmed to assign (604) targeted messages to a predetermined channel and encode (606) the addresses of the targeted messages to the predetermined subset of subscribers using a VIN or portion thereof. The controller can be further programmed to transfer (608) the targeted messages and addresses to a satellite uplink (107) and satellite (110) via a messaging uplink interface (106) for retransmission and reception by a plurality of selective call receivers 109 addressable individually using a predetermined VIN or portion thereof.

    Systems and methods for implementing cross-fading, interstitials and other effects downstream

    公开(公告)号:US10152984B2

    公开(公告)日:2018-12-11

    申请号:US15714095

    申请日:2017-09-25

    Abstract: Systems and methods are presented for cross-fading (or other multiple clip processing) of information streams on a user or client device, such as a telephone, tablet, computer or MP3 player, or any consumer device with audio playback. Multiple clip processing can be accomplished at a client end according to directions sent from a service provider that specify a combination of (i) the clips involved; (ii) the device on which the cross-fade or other processing is to occur and its parameters; and (iii) the service provider system. For example, a consumer device with only one decoder, can utilize that decoder (typically hardware) to decompress one or more elements that are involved in a cross-fade at faster than real time, thus pre-fetching the next element(s) to be played in the cross-fade at the end of the currently being played element. The next elements(s) can, for example, be stored in an input buffer, then decoded and stored in a decoded sample buffer, all prior to the required presentation time of the multiple element effect. At the requisite time, a client device component can access the respective samples of the decoded audio clips as it performs the cross-fade, mix or other effect. Such exemplary embodiments use a single decoder and thus do not require synchronized simultaneous decodes.

    Methods to reclaim unused throughput in an SDARS system

    公开(公告)号:US10110296B2

    公开(公告)日:2018-10-23

    申请号:US14845080

    申请日:2015-09-03

    Abstract: Systems, algorithms and methods for reclaiming unused portions of a satellite broadcast service's bandwidth for new services, utilizing higher performance coding techniques to yield better throughput, are presented. Reclamation of bandwidth can be achieved in a way that is invisible to a legacy receiver, and that does not interfere with its reception of a legacy signal. New data may be transmitted within a legacy transmission frame, for example within its cluster structure, using the same modulation and synchronization as used for the legacy data. In other embodiments, one or more clusters or subdivisions with only new data may be transmitted, using the same or different modulation and synchronization as the legacy data clusters, but now employing a higher performing FEC and data interleaving structure on those clusters which contain only new data to yield an increase in available throughput.

    SYSTEMS AND METHODS FOR IMPLEMENTING CROSS-FADING, INTERSTITIALS AND OTHER EFFECTS DOWNSTREAM

    公开(公告)号:US20180012611A1

    公开(公告)日:2018-01-11

    申请号:US15714095

    申请日:2017-09-25

    Abstract: Systems and methods are presented for cross-fading (or other multiple clip processing) of information streams on a user or client device, such as a telephone, tablet, computer or MP3 player, or any consumer device with audio playback. Multiple clip processing can be accomplished at a client end according to directions sent from a service provider that specify a combination of (i) the clips involved; (ii) the device on which the cross-fade or other processing is to occur and its parameters; and (iii) the service provider system. For example, a consumer device with only one decoder, can utilize that decoder (typically hardware) to decompress one or more elements that are involved in a cross-fade at faster than real time, thus pre-fetching the next element(s) to be played in the cross-fade at the end of the currently being played element. The next elements(s) can, for example, be stored in an input buffer, then decoded and stored in a decoded sample buffer, all prior to the required presentation time of the multiple element effect. At the requisite time, a client device component can access the respective samples of the decoded audio clips as it performs the cross-fade, mix or other effect. Such exemplary embodiments use a single decoder and thus do not require synchronized simultaneous decodes.

Patent Agency Ranking