Abstract:
In a unique paging time slot format, each of the allocated paging time slots occurs periodically and is split into several prescribed paging time slots including at least one first type paging time slot having a relatively short duration and at least one second type paging time slot having a longer duration. The at least one first type paging time slots is of relatively short duration and transports an indication whether a particular associated wireless terminal was paged. The second type paging time slot is of longer duration than the first type time slot and transports the entire paging message. The paging time slots are periodically transmitted and intended for at least one particular wireless terminal.
Abstract:
Group communications methods and apparatus are described. Multiple modes of group communications signaling are supported. In a first mode, copies of packets are separately transmitted to each group member in a sector or cell. In a second mode a copy of a packet is directed to multiple group members at the same time. Transitions between the two modes may be determined as a function of the cost of operating in each of the modes in terms of system cost and/or the number of group members in a cell or sector being serviced by a transmitter.
Abstract:
A method for reducing the peak-to-average ratio in an OFDM communication signal is provided. The method includes defining a constellation having a plurality of symbols, defining a symbol duration for the OFDM communication signal, and defining a plurality of time instants in the symbol duration. A plurality of tones are allocated to a particular communication device, and a discrete signal is constructed in the time domain by mapping symbols from the constellation to the time instants. A continuous signal is generated by applying an interpolation function to the discrete signal such that the continuous signal only includes sinusoids having frequencies which are equal to the allocated tones.
Abstract:
A method for reducing the peak-to-average ratio in an OFDM communication signal is provided. The method includes defining a constellation having a plurality of symbols, defining a symbol duration for the OFDM communication signal, and defining a plurality of time instants in the symbol duration. A plurality of tones are allocated to a particular communication device, and a discrete signal is constructed in the time domain by mapping symbols from the constellation to the time instants. A continuous signal is generated by applying an interpolation function to the discrete signal such that the continuous signal only includes sinusoids having frequencies which are equal to the allocated tones.
Abstract:
A composite signal includes a high power beacon signal and low power corresponding wideband synchronization signal and is communicated over a time interval exceeding a single OFDM transmission time interval. A base station transmits one or more different such composite broadcast signals in a recurring timing structure. Each different potential beacon signal, e.g., a single tone signal, is paired with a unique wideband synchronization signal. A wideband synchronization signal includes at least some predetermined null tones and at least some predetermined non-null tones. For a given wideband synchronization signal, the predetermined null tones carry predetermined modulation symbol values, A wireless terminal receives a composite signal, identifies a beacon, determines a corresponding known wideband synchronization signal, compares received to known wideband synchronization signals, and determines at least one of a timing adjustment, frequency adjustment and channel estimation.
Abstract:
Signal, e.g., message, security techniques are described for wireless systems. A first signal is received by an access node via a wireless link. The signal includes a first authenticator that was generated by the transmitting device, e.g., wireless terminal. The access node determines from an attribute of the signal at least some information known to both the access node and transmitting device but which was not transmitted as part of the message content. The determined information was used by the wireless terminal in generating the first authenticator. The access node sends at least a portion of the first signal including the first authenticator and the determined information to another entity. The entity compares the first authenticator to a second authenticator it generates from the determined information and a secure key which it shares with the transmitting device to determine if the first and second authenticators match.
Abstract:
The use of multiple states of mobile communication device operation to allow a single base station to support a relatively large number of mobile nodes is described. The various states require different amounts of communications resources, e.g., bandwidth. Four supported states of operation are an on-state, a hold-state, a sleep-state, and an access-state. Each mobile node in the on-state is allocated communication resources to perform transmission power control signaling, transmission timing control signaling and to transmit data as part of a data uplink communications operation. Each mobile node in the hold-state is allocated communication resources to perform transmission timing control signaling and is provided a dedicated uplink for requesting a state transition and a shared resource for transmitting acknowledgements. In the sleep state a mobile node is allocated minimal resources and does not conduct power control signaling or timing control signaling. Data may be received in the on and hold states.
Abstract:
A method for reducing the peak-to-average ratio in an OFDM communication signal is provided. The method includes defining a constellation having a plurality of symbols, defining a symbol duration for the OFDM communication signal, and defining a plurality of time instants in the symbol duration. A plurality of tones are allocated to a particular communication device, and a discrete signal is constructed in the time domain by mapping symbols from the constellation to the time instants. A continuous signal is generated by applying an interpolation function to the discrete signal such that the continuous signal only includes sinusoids having frequencies which are equal to the allocated tones.
Abstract:
In many cellular systems, reusing spectrum bandwidth, creates problems in boundary regions between the cells and sectors where the signal strength received from adjacent base stations or adjacent sector transmissions of a single base station may be nearly equivalent. The invention creates a new type of diversity, referred to as multiple carrier diversity by utilizing multiple carriers, assigning different power levels to each carrier frequency at each base station, and/or offsetting sector antennas. The cell and/or sector coverage areas can be set so as to minimize or eliminate overlap between cell and/or sector boundary regions of different carrier frequencies. Mobile nodes traveling throughout the system can exploit multiple carrier diversity by detecting carriers and selecting to use a non-boundary carrier based on other system criteria in order to improve performance. Boundary carriers may, but need not be, identified and excluded from consideration for use by a wireless terminal.
Abstract:
The use of multiple states of mobile communication device operation to allow a single base station to support a relatively large number of mobile nodes is described. Various states require different amounts of communications resources, e.g., bandwidth and/or control signaling. Different numbers of control channels are monitored during different states of operation. A mobile node monitors during a first state of operation, e.g., the on-state, a first control channel to detect control signals in segments of the first control channel intended for the mobile node, detects a period of reduced control signaling to said mobile node on said first control channel, and then, in response to detecting a period of reduced control signal signaling to the mobile node, transitions from said first state to a second state of operation. During the second state of operation fewer control channels are monitored and the first control channel is not monitored.