Abstract:
Aspects relate to mitigating interference in a communication network that does not employ a centralized scheduler. A transmission sent on a subset of resources is evaluated to determine a number of communication pairs that have selected that subset of resources on which to transmit. If there are a large number of communication pairs transmitting on that subset, the transmission is ignored by a receiving device. The number of degrees of freedom that contain energy on the subset is evaluated to determine if an expected number of degrees of freedom that should have energy is met or exceeded. If the expected threshold number is met or exceed, the transmission is decoded by the receiving device, else the transmission is not decoded.
Abstract:
An improved mechanism is provided that facilitates transmission of small packets within an ad hoc peer-to-peer network. A small packet is identified to a receiver within a control channel so that its lower power can be considered in an interference management protocol implemented among local peer devices. In a traffic slot, a transmitter voluntarily backs down on the transmitter power as a smaller packet will require much lower signal-to-noise ratio. This will improve the signal energy per bit per noise power density for the transmission as well as minimize the interference caused to other wireless communications happening in the same spectrum.
Abstract:
The methods and apparatus described herein are used to operate a wireless device. One method of operating a wireless device includes filtering a first set of digital samples using a first filter at a first time to generate a first signal, transmitting the first signal, filtering a second set of digital samples using a second filter at a second time to generate a second signal, and transmitting the second signal. In one embodiment, an apparatus for operating a wireless device includes a processor configured to filter, at a first wireless device, a first set of digital samples using a first filter at a first time to generate a first signal, transmit, from the first wireless device, the first signal, and filter, at the first wireless device, a second set of digital samples using a second filter at a second time to generate a second signal.
Abstract:
An apparatus and method are disclosed for generating a transmission connection identifier (CID) for a transmitter/receiver pair in a wireless network. The CID may be selected from or mapped to a hybrid CID space comprising a first set of orthogonal CIDs and a second set of non-orthogonal (random or pseudo-random) CIDs. When a transmitter device wants to initiate a peer-to-peer connection with a receiver device, the transmitter and receiver devices attempt to obtain a CID to identify their connection within a traffic channel in a shared frequency space. The first and/or second device attempt to select a CID from the first set of orthogonal CIDs. However, if a CID collision is detected, the first and second devices select their CID from the second set of non-orthogonal CIDs. The selected transmission CID may be used during a time slot or interval to facilitate communications between the first and second devices.
Abstract:
Aspects describe different multiple antenna techniques that can be utilized in a peer-to-peer network based on a network congestion level. A MIMO scheme where a transmitter sends to a receiver multiple spatial streams at substantially the same time in the same traffic segment can be utilized when network congestion level is low. A receiver beam forming scheme where transmitter sends a single stream in a traffic segment and receiver uses multiple receive antennas to maximize signal to noise ratio can be utilized when network congestion level is high. The connection pair (transmitter and receiver) occupy more control resources in the MIMO scheme than the receiver beam forming scheme. The decision related to which technique to utilize can be made at about the same time as a communication is initiated. Further, if network conditions change during a communication, the antenna technique that is utilized can be switched to a different technique during the communication exchange.
Abstract:
Methods and apparatus for communicating information, e.g., peer discovery information, to peer communications devices using multiple antenna patterns at different times are described. One exemplary method includes transmitting first peer discovery information during a first period of time using a first antenna pattern, and transmitting second peer discovery information during a second period of time using a second antenna pattern which is different from the first antenna pattern. In at least some embodiments the first antenna pattern is a beam antenna pattern and the second antenna pattern is an omni-directional antenna pattern. In some embodiments, an omni-directional antenna pattern is used at least 50% of the time. This allows devices near the transmitting device to quickly obtain peer discovery information while devices further away make take longer to obtain the peer discovery information since they may need for a beam pattern facing their direction to be used.
Abstract:
Methods and apparatus related to broadcasting data in a peer to peer wireless communications network are described. A timing structure is utilized employing slots of a first type which support broadcast traffic transmissions and unicast traffic transmissions and slots of a second type which support unicast traffic transmission but do not support broadcast traffic transmissions. In various embodiments, traffic air link resource scheduling is performed in a decentralized manner on a slot by slot basis. In some such embodiments, a wireless device prior to transmitting a broadcast data traffic signal, transmits a broadcast transmission request signal, sometimes alternatively referred to as a broadcast indicator signal; and a wireless device prior to transmitting a peer to peer unicast signal, transmits a peer to peer traffic transmission request signal. In various embodiments, for slots of the first type, broadcast transmission requests have priority over peer to peer unicast transmission requests.
Abstract:
An apparatus and method are disclosed for generating a transmission connection identifier (CID) for a transmitter/receiver pair in a wireless network. The CID may be selected from or mapped to a hybrid CID space comprising a first set of orthogonal CIDs and a second set of non-orthogonal (random or pseudo-random) CIDs. When a transmitter device wants to initiate a peer-to-peer connection with a receiver device, the transmitter and receiver devices attempt to obtain a CID to identify their connection within a traffic channel in a shared frequency space. The first and/or second device attempt to select a CID from the first set of orthogonal CIDs. However, if a CID collision is detected, the first and second devices select their CID from the second set of non-orthogonal CIDs. The selected transmission CID may be used during a time slot or interval to facilitate communications between the first and second devices.
Abstract:
An improved mechanism is provided that facilitates transmission of small packets within an ad hoc peer-to-peer network. A small packet is identified to a receiver within a control channel so that its lower power can be considered in an interference management protocol implemented among local peer devices. In a traffic slot, a transmitter voluntarily backs down on the transmitter power as a smaller packet will require much lower signal-to-noise ratio. This will improve the signal energy per bit per noise power density for the transmission as well as minimize the interference caused to other wireless communications happening in the same spectrum.
Abstract:
A first device is configured to select and utilize a connection identifier (CID) for a peer-to-peer communication connection between the first device and a second device in a wireless communications network. The CID is selected from a predetermined set of a plurality of CIDs. Prior to selecting the connection identifier, the first device monitors a CID broadcast channel to determine whether the CID is being utilized by other nearby connections. If it is determined that the CID is being utilized by another connection in the proximity, a different (unused) CID is selected. A transmission request is transmitted to the second device using a first transmission resource unit within a traffic control channel slot, the first transmission resource unit being determined as a function of the selected CID. The first device transmits traffic data to the second device in a traffic channel slot corresponding to the traffic control channel slot.